Contents

Chapter 1. The Four Numbers Problem 1
1. Introduction 1
2. The Four Numbers Game Rule 2
3. Symmetry and the Four Numbers Game 5
4. Does Every Four Numbers Game Have Finite Length? 11
5. Games With Length Independent of the Size of the Numbers 15
6. Long Games 17
6.1. Some Formal Notation 18
6.2. Constructing Long Games 19
7. The Tribonacci Games 22
7.1. Computation of \(L(T_n) \) 22
7.2. Upper Bounds for Lengths of Games 23
8. The Length of the Four Real Numbers Game 26
8.1. Linear Algebra Comes Into Play 26
8.2. Construction of a Four Numbers Game of Infinite Length 27
8.3. Construction of All Four Numbers Games of Infinite Length 28
9. The Probability that a Four Numbers Game Ends in \(n \) Steps 32
10. The \(k \)-Numbers Game 41

Bibliography 45

Chapter 2. Rational Right Triangles and the Congruent Number Problem 47
1. Introduction 47
2. Right Triangles 48
3. Pythagorean Triples 63
4. Sums of Squares 69
4.1. The Two Squares Theorem 69
4.2. Characterization of the Length of the Hypotenuse of an Integer Right Triangle 75
4.3. The Number of Representations of \(n \) as a Sum of Two Squares 76
5. Rational Right Triangles 84
6. Congruent Numbers 90
7. Equivalent Definitions of Congruent Number 94
8. 1, 2, and 3 Are Not Congruent Numbers 96
9. Rational Right Triangles and Certain Cubic Curves 101
10. Elliptic Curves 104
11. The Abelian Group of Rational Points on an Elliptic Curve 109
12. \(E_n(\mathbb{Q}) \) and Congruent Numbers 112

Bibliography 121

Chapter 3. Lattice Point Geometry 123
1. Introduction 123
2. Geometric Shapes as Lattice Polygons 126
2.1. Properties of Lattice Polygons in the Plane 126
3. Embedding Regular Polygons in a Lattice 130
3.1. Regular Lattice \(n \)-gons 130
3.2. Which Positive Integers Are Areas of Lattice Squares? 134
4. Basic Algebraic and Geometric Tools 137
4.1. Dissection of a Lattice Polygon Into Lattice Triangles 137
4.2. The Algebraic Structure of the Lattice \(\mathbb{Z}^2 \) 140
4.3. The Isometry Group of a Lattice 143
5. Pick’s Theorem 145
5.1. First Proof 145
5.2. From Euler to Pick 149
5.3. Visible Lattice Points 153
5.4. Pick’s Theorem for \(nP \) 156
6. Applications of Pick’s Theorem 157
6.1. Lattice Triangles \(T \) with \(I(T) = 0 \) and 1 157
6.2. Farey Sequences 159
7. Lattice Points In and On a Circle 162
8. Integer Points in Bounded Convex Regions in \(\mathbb{R}^2 \) 166
8.1. Convex Plane Regions and Integer Points 167
8.2. An Application of Pick’s Theorem to Bounded Convex Regions 168
9. Minkowski’s Theorem in \mathbb{R}^2 169
10. Embedding Regular Plane Polygons as Lattice Polygons in \mathbb{R}^k 172
11. Lattice Hypercubes 176
12. Minkowski’s Theorem in \mathbb{R}^k 183
13. Ehrhart’s Theorem 185
13.1. Convex Polytopes 186
13.2. Ehrhart’s Theorem for a k-Simplex 188
13.3. The Coefficients of the Ehrhart Polynomial 191

Bibliography 193

Chapter 4. Rational Approximation 195
1. Introduction 195
2. Introduction to Approximation Theory 197
3. Properties of Rational Numbers Close to a Real Number 201
4. An Interesting Example, Part I 204
5. Dirichlet’s Theorem 205
6. An Interesting Example, Part II 208
7. Hurwitz’s Theorem 210
8. Liouville’s Theorem 215
8.1. Statement and Proofs of Liouville’s Theorem 216
8.2. Liouville’s Theorem and Transcendental Numbers 219
9. The Thue-Siegel-Roth Theorem 221
9.1. Introduction 221
9.2. Thue’s Theorem 224
9.3. Roth’s Theorem 227
10. The Approximation Exponent 230
11. An Interesting Example, Part III 232
12. An Application to Diophantine Equations 233
13. What About Transcendental Numbers? 236

Bibliography 241

Chapter 5. Dissection 243
1. Introduction 243
2. Dissection and Area 245
3. Basic Properties of Dissection 251