This book contains eight papers on representations and cohomology of Lie algebras. The Lie algebras here are either infinite-dimensional, are defined over fields of finite characteristic, or are actually Lie superalgebras or quantum groups. Among the topics covered here are generalizations of the Virasoro algebra, representation theory of the Virasoro algebra and of Kac-Moody algebras, cohomology of Lie algebras of vector fields on the line, and Lie superalgebras of vector fields. The paper by Retakh and Shander contains a generalization of the Schwarz derivative to the noncommutative case.
Research mathematicians.
The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an award-winning artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.
Undergraduates, graduate students, and research mathematicians interested in mathematics.
The authors manage to breathe new life into topics that at first glance appear to be old hat.