Contents

Foreword vii

Chapter 1. Basic Notions 1

Chapter 2. Finite Speed of Propagation of Signals 5

References 14

Chapter 3. Hyperbolic Equations with Constant Coefficients 15

3.1. The Domain of Influence 15
3.2. Spacelike Hypersurfaces 19
3.3. The Initial Value Problem on Spacelike Hypersurfaces 23
3.4. Characteristic Surfaces 25
3.5. Solution of the Initial Value Problem by the Radon Transform 29
3.6. Conservation of Energy 33

References 34

Chapter 4. Hyperbolic Equations with Variable Coefficients 37

4.1. Equations with a Single Space Variable 37
4.2. Characteristic Surfaces 39
4.3. Energy Inequalities for Symmetric Hyperbolic Systems 41
4.4. Energy Inequalities for Solutions of Second-Order Hyperbolic Equations 45
4.5. Energy Inequalities for Higher-Order Hyperbolic Equations 46

References 53

Chapter 5. Pseudodifferential Operators and Energy Inequalities 55

References 60

Chapter 6. Existence of Solutions 61

6.1. Equivalence of the Initial Value Problem and the Periodic Problem 61
6.2. Negative Norms 63
6.3. Solution of the Periodic Problem 65
6.4. A Local Uniqueness Theorem 66

References 67

Chapter 7. Waves and Rays 69

Introduction 69
7.1. The Initial Value Problem for Distributions 71
7.2. Progressing Waves 74
7.3. Integrals of Compound Distributions 77
CONTENTS

7.4. An Approximate Riemann Function and the Generalized Huygens Principle 79

References 82

Chapter 8. Finite Difference Approximation to Hyperbolic Equations 83

8.1. Consistency 83
8.2. Domain of Dependence 84
8.3. Stability and Convergence 85
8.4. Higher-Order Schemes and Their Stability 88
8.5. The Gibbs Phenomenon 96
8.6. The Computation of Discontinuous Solutions of Linear Hyperbolic Equations 98
8.7. Schemes in More Than One Space Variable 103
8.8. The Stability of Difference Schemes 108
References 119

Chapter 9. Scattering Theory 121

9.1. Asymptotic Behavior of Solutions of the Wave Equation 121
9.2. The Lax-Phillips Scattering Theory 125
9.3. The Associated Semigroup 129
9.4. Back to the Wave Equation in the Exterior of an Obstacle 132
9.5. The Semigroup Associated with Scattering by an Obstacle 139
9.6. Analytic Form of the Scattering Matrix 144
9.7. Scattering of Automorphic Waves 154
References 163

10.1. Scalar Equations; Basics 165
10.2. The Initial Value Problem for Admissible Solutions 169
10.3. Hyperbolic Systems of Conversation Laws 178
10.4. The Viscosity Method and Entropy 184
10.5. Finite Difference Methods 189
10.6. The Flow of Compressible Fluids 193
References 197

Appendix A. Huygens’ Principle for the Wave Equation on Odd-Dimensional Spheres 201

References 202

Appendix B. Hyperbolic Polynomials 205

References 206

Appendix C. The Multiplicity of Eigenvalues 207

References 209

Appendix D. Mixed Initial and Boundary Value Problems 211

References 214

Appendix E. Energy Decay for Star-Shaped Obstacles by Cathleen S. Morawetz 215