Contents

Preface vii

Chapter 1. The Classical WKB Method 1
1.1. Introduction 1
1.2. WKB Approximation to the Linear Schrödinger Equation 2
1.3. The WKB Approximation to Nonlinear Schrödinger Equation 5
1.4. References and Remarks 10

Chapter 2. Wigner Measure 11
2.1. Semiclassical Pseudodifferential Operators and the FBI Transform 11
2.2. Wigner Measure 14
2.3. Semiclassical Limit of the Linear Schrödinger Equation 30
2.4. References and Remarks 34

Chapter 3. The Limit from the One-Dimensional Schrödinger-Poisson to Vlasov-Poisson Equations 37
3.1. Introduction 37
3.2. Uniform Estimates 42
3.3. The Limit to the Vlasov-Poisson Equations 46
3.4. The Main Theorem 73
3.5. Mixed State Case 76
3.6. References and Remarks 79

Chapter 4. Semiclassical Limit of Schrödinger-Poisson Equations 81
4.1. Introduction 81
4.2. Preliminaries 84
4.3. Modulated Energy Estimate 89
4.4. The Main Theorem 95
4.5. References and Remarks 104

Chapter 5. Semiclassical Limit of the Cubic Schrödinger Equation in an Exterior Domain 105
5.1. Introduction 105
5.2. Local Existence of a Smooth Solution to (5.7)–(5.8) 109
5.3. Uniform and Modulated Energy Estimates 115
5.4. Semiclassical Limit of the Cubic Schrödinger Equation 125
5.5. References and Remarks 127
Chapter 6. Incompressible and Compressible Limits of Coupled Systems of Nonlinear Schrödinger Equations 129
 6.1. Introduction 129
 6.2. Conservation Laws 131
 6.3. Incompressible Limit of (6.1) 136
 6.4. Compressible Limit of (6.2) 146
 6.5. References and Remarks 152

Chapter 7. High-Frequency Limit of the Helmholtz Equation 153
 7.1. Introduction 153
 7.2. Uniform Estimate for Solutions of (7.1) 154
 7.3. Limit to the Liouville Equation 159
 7.4. References and Remarks 171

Appendix A. Global Solutions to (3.14) 173
Appendix B. Denseness of Polynomials 177
Appendix C. Global Existence of a Solution to (5.1) 179
Appendix D. Global Smooth Solution to (6.1) 189
Bibliography 193