**Contemporary Mathematics**

Volume: 399;
2006;
209 pp;
Softcover

MSC: Primary 11; 19; 20; 46; 55; 57;

Print ISBN: 978-0-8218-3696-5

Product Code: CONM/399

List Price: $75.00

Individual Member Price: $60.00

**Electronic ISBN: 978-0-8218-7989-4
Product Code: CONM/399.E**

List Price: $75.00

Individual Member Price: $60.00

# An Alpine Anthology of Homotopy Theory

Share this page *Edited by *
*Dominique Arlettaz; Kathryn Hess*

The second Arolla conference on algebraic topology brought together specialists covering a wide range of homotopy theory and \(K\)-theory. These proceedings reflect both the variety of talks given at the conference and the diversity of promising research directions in homotopy theory. The articles contained in this volume include significant contributions to classical unstable homotopy theory, model category theory, equivariant homotopy theory, and the homotopy theory of fusion systems, as well as to \(K\)-theory of both local fields and \(C^*\)-algebras.

#### Readership

Graduate students and research mathematicians interested in algebraic topology.

# Table of Contents

## An Alpine Anthology of Homotopy Theory

- Contents vii8 free
- Preface ix10 free
- List of conference talks xi12 free
- List of participants xiii14 free
- A note on the homology of ∑n, the Schwartz genus, and solving polynomial equations 116 free
- A geometric construction of saturated fusion systems 1126
- The orthogonal subcategory problem in homotopy theory 4156
- Homotopy pull-back squares up to localization 5570
- Traces and reduced group C*-algebras 7388
- Integral cohomology of 2-local Hopf spaces with at most two non-trivial finite homotopy groups 87102
- On the double suspension and the mod-p Moore space 101116
- Rational extended Mackey functors for the circle group 123138
- On the topological cyclic homology of the algebraic closure of a local field 133148
- Realizing Kasparov's KK-theory groups as the homotopy classes of maps of a Quillen model category 163178
- Homology commutators and P1 actions 199214