Contents

Acknowledgements xi

Credits xii

Preface xvii
 An overview of the book xvii
 Part I: Analyzing games: Strategies and equilibria xvii
 Part II: Designing games and mechanisms xxi
 For the reader and instructor xxiv
 Prerequisites xxiv
 Courses xxiv
 Notes xxv

Part I: Analyzing games: Strategies and equilibria 1

Chapter 1. Combinatorial games 2
 1.1. Impartial games 3
 1.1.1. Nim 6
 1.1.2. Bouton’s solution of Nim 7
 1.1.3. Other impartial games 8
 1.2. Partisan games 10
 1.2.1. The game of Hex 12
 1.2.2. Topology and Hex: A path of arrows* 12
 1.2.3. Hex and Y 14
 1.2.4. More general boards* 16
 1.2.5. Other partisan games played on graphs 17
 Notes 21
 Exercises 22

Chapter 2. Two-person zero-sum games 24
 2.1. Examples 24
 2.2. Definitions 26
 2.3. The Minimax Theorem and its meaning 27
 2.4. Simplifying and solving zero-sum games 28
 2.4.1. Pure optimal strategies: Saddle points 28
 2.4.2. Equalizing payoffs 29
 2.4.3. The technique of domination 29
 2.4.4. Using symmetry 31
 2.5. Nash equilibria, equalizing payoffs, and optimal strategies 33
 2.5.1. A first glimpse of incomplete information 34
 2.6. Proof of von Neumann’s Minimax Theorem* 35
2.7. Zero-sum games with infinite action spaces* 38
Notes 38
Exercises 40

Chapter 3. Zero-sum games on graphs 45
3.1. Games in series and in parallel 45
 3.1.1. Resistor networks and troll games 46
3.2. Hide and Seek games 48
 3.2.1. Maximum matching and minimum covers 49
3.3. A pursuit-evasion game: Hunter and Rabbit* 52
 3.3.1. Towards optimal strategies 53
 3.3.2. The hunter’s strategy 54
 3.3.3. The rabbit’s strategy 55
3.4. The Bomber and Battleship game 59
Notes 59
Exercises 60

Chapter 4. General-sum games 64
4.1. Some examples 64
4.2. Nash equilibria 67
4.3. General-sum games with more than two players 71
 4.3.1. Symmetric games 75
4.4. Potential games 75
 4.4.1. The general notion 77
 4.4.2. Additional examples 78
4.5. Games with infinite strategy spaces 80
4.6. The market for lemons 82
Notes 83
Exercises 84

Chapter 5. Existence of Nash equilibria and fixed points 89
5.1. The proof of Nash’s Theorem 89
5.2. Fixed-point theorems* 90
 5.2.1. Easier fixed-point theorems 91
 5.2.2. Sperner’s Lemma 92
 5.2.3. Brouwer’s Fixed-Point Theorem 93
5.3. Brouwer’s Fixed-Point Theorem via Hex* 96
5.4. Sperner’s Lemma in higher dimensions* 98
Notes 102
Exercises 102

Chapter 6. Games in extensive form 104
6.1. Introduction 104
6.2. Games of imperfect information 109
 6.2.1. Behavioral strategies 110
6.3. Games of incomplete information 112
 6.3.1. Bayesian games 113
 6.3.2. Signaling 116
 6.3.3. Zero-sum games of incomplete information 117
 6.3.4. Summary: Comparing imperfect and incomplete information 118
<table>
<thead>
<tr>
<th>Chapter 11. Fair division</th>
<th>183</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Cake cutting</td>
<td>183</td>
</tr>
<tr>
<td>11.1.1. Cake cutting via Sperner’s Lemma</td>
<td>185</td>
</tr>
<tr>
<td>11.2. Bankruptcy</td>
<td>188</td>
</tr>
<tr>
<td>Notes</td>
<td>192</td>
</tr>
<tr>
<td>Exercises</td>
<td>193</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12. Cooperative games</th>
<th>194</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1. Transferable utility games</td>
<td>194</td>
</tr>
<tr>
<td>12.2. The core</td>
<td>195</td>
</tr>
<tr>
<td>12.3. The Shapley value</td>
<td>196</td>
</tr>
<tr>
<td>12.3.1. Shapley’s axioms</td>
<td>196</td>
</tr>
<tr>
<td>12.3.2. Shapley’s Theorem</td>
<td>198</td>
</tr>
<tr>
<td>12.3.3. Additional examples</td>
<td>199</td>
</tr>
<tr>
<td>12.4. Nash bargaining</td>
<td>200</td>
</tr>
<tr>
<td>Notes</td>
<td>203</td>
</tr>
<tr>
<td>Exercises</td>
<td>205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13. Social choice and voting</th>
<th>206</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1. Voting and ranking mechanisms</td>
<td>206</td>
</tr>
<tr>
<td>13.2. Definitions</td>
<td>208</td>
</tr>
<tr>
<td>13.3. Arrow’s Impossibility Theorem</td>
<td>209</td>
</tr>
<tr>
<td>13.4. The Gibbard-Satterthwaite Theorem</td>
<td>210</td>
</tr>
<tr>
<td>13.5. Desirable properties for voting and ranking</td>
<td>210</td>
</tr>
<tr>
<td>13.6. Analysis of specific voting rules</td>
<td>211</td>
</tr>
<tr>
<td>13.7. Proof of Arrow’s Impossibility Theorem*</td>
<td>214</td>
</tr>
<tr>
<td>13.8. Proof of the Gibbard-Satterthwaite Theorem*</td>
<td>216</td>
</tr>
<tr>
<td>Notes</td>
<td>218</td>
</tr>
<tr>
<td>Exercises</td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14. Auctions</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1. Single item auctions</td>
<td>223</td>
</tr>
<tr>
<td>14.1.1. Bidder model</td>
<td>224</td>
</tr>
<tr>
<td>14.2. Independent private values</td>
<td>226</td>
</tr>
<tr>
<td>14.3. Revenue in single-item auctions</td>
<td>227</td>
</tr>
<tr>
<td>14.4. Toward revenue equivalence</td>
<td>228</td>
</tr>
<tr>
<td>14.4.1. I.I.D. bidders</td>
<td>229</td>
</tr>
<tr>
<td>14.4.2. Payment and revenue equivalence</td>
<td>230</td>
</tr>
<tr>
<td>14.4.3. Applications</td>
<td>231</td>
</tr>
<tr>
<td>14.5. Auctions with a reserve price</td>
<td>232</td>
</tr>
<tr>
<td>14.5.1. Revenue equivalence with reserve prices</td>
<td>233</td>
</tr>
<tr>
<td>14.5.2. Entry fee versus reserve price</td>
<td>233</td>
</tr>
<tr>
<td>14.5.3. Evaluation fee</td>
<td>234</td>
</tr>
<tr>
<td>14.5.4. Ex-ante versus ex-interim versus ex-post</td>
<td>235</td>
</tr>
<tr>
<td>14.6. Characterization of Bayes-Nash equilibrium</td>
<td>236</td>
</tr>
<tr>
<td>14.7. Price of anarchy in auctions</td>
<td>239</td>
</tr>
<tr>
<td>14.8. The Revelation Principle</td>
<td>240</td>
</tr>
<tr>
<td>14.9. Myerson’s optimal auction</td>
<td>242</td>
</tr>
<tr>
<td>14.9.1. The optimal auction for a single bidder</td>
<td>242</td>
</tr>
</tbody>
</table>
CONTENTS

Notes 299
Exercises 301

Chapter 18. Adaptive decision making 302
18.1. Binary prediction with expert advice and a perfect expert 302
18.2. Nobody is perfect 305
18.2.1. Weighted majority 305
18.3. Multiple choices and varying costs 307
18.3.1. Discussion 308
18.3.2. The Multiplicative Weights Algorithm 308
18.3.3. Gains 311
18.4. Using adaptive decision making to play zero-sum games 311
18.5. Adaptive decision making as a zero-sum game* 313
18.5.1. Minimax regret is attained in \{0,1\} losses 313
18.5.2. Optimal adversary strategy 314
18.5.3. The case of two actions 315
18.5.4. Adaptive versus oblivious adversaries 317
Notes 319
Exercises 320

Appendix A. Linear programming 323
A.1. The Minimax Theorem and linear programming 323
A.2. Linear programming basics 324
A.2.1. Linear programming duality 325
A.2.2. Duality, more formally 325
A.2.3. An interpretation of a primal/dual pair 326
A.2.4. The proof of the Duality Theorem* 328
A.3. Notes 331
Exercises 331

Appendix B. Some useful probability tools 332
B.1. The second moment method 332
B.2. The Hoeffding-Azuma Inequality 332

Appendix C. Convex functions 334

Appendix D. Solution sketches for selected exercises 338

Bibliography 349

Index 365