Contents

Preface to the Three Volume Set vii
Preface to Volume 3 xi

Chapter 1. A Graphical Introduction to Hyperbolic Geometry 1
1.1. The Creation of Hyperbolic Geometry 1
1.2. Graphical Approximations to Non-Euclidean Geometry 2
1.3. Counting Layer Size Combinatorially 4
1.4. Asymptotic Growth Rate 5
1.5. Another Graph Model of Hyperbolic Space 6
1.6. Exercises 8

Chapter 2. Hyperbolic Geometry 11
2.1. Introduction 11
2.2. The Origins of Hyperbolic Geometry 12
2.3. Why Call It Hyperbolic Geometry? 14
2.4. Understanding the One-dimensional Case 15
2.5. Generalizing to Higher Dimensions 18
2.6. Rudiments of Riemannian Geometry 18
2.7. Five Models of Hyperbolic Space 19
2.8. Stereographic Projection 22
2.9. Geodesics 26
2.10. Isometries and Distances in the Hyperboloid Model 30
2.11. The Space at Infinity 32
2.12. The Geometric Classification of Isometries 33
2.13. Curious Facts about Hyperbolic Space 34
2.14. The Sixth Model 43
2.15. Why Study Hyperbolic Geometry? 45
2.16. When Does a Manifold Have a Hyperbolic Structure? 49
2.17. How to get Analytic Coordinates at Infinity? 52

Chapter 3. Gravity As Curvature 55
3.1. Einstein Identified Gravity with the Curvature of Space-Time 55

Chapter 4. Curvature by Polyhedral Approximation 57
4.1. Approximating Smooth Surfaces by Polyhedra 57
4.2. The Curvature of a Polyhedral Disk 57
4.3. How Flat Is a Disk? 57
4.4. How Straight Is a Disk Boundary? 59
4.5. Duality Theorem: Angle Defect + Boundary Defect = 2π 61
4.6. The Curvature of a Polyhedral Disk 63
4.7. Applications of the Duality Between Angle Defect and Boundary Defect 63
4.8. The Curvature of a Smooth Disk 66

Chapter 5. Curvature As a Length Derivative 69
5.1. Straight Lines and Boundary Defects on Smooth Surfaces 69
5.2. The Length Derivative in a Polyhedral Surface 71
5.3. The Length Derivative on a Cone 75
5.4. Evaluating the Double Limit 78

Chapter 6. Theorema Egregium 81
6.1. Umlauf Theorem: Smooth Version 81
6.2. The Theorem 81
6.3. Outline of the Proof 82
6.4. Flexibility in Calculating Boundary Defect 82
6.5. Completing the Proof of Gauss’s Theorema Egregium 85

Chapter 7. Curvature Appendix 87
7.1. The Generalized Umlauf Theorem 87
7.2. Two Technical Properties of a Smooth Surface 88
7.3. Specialized Polyhedral Approximations to D'. 90
7.4. Specialized Polyhedral Approximations in the Plane. 90
7.5. Specialized Polyhedral Approximations on Curved Surfaces. 92
7.6. Outline of the Proof of the Theorem. 94
7.7. Exercises 98

Bibliography 99