Contents

Preface xi
 Overview xii
 For the Reader xiii
 For the Instructor xiv
 For the Expert xvi

Acknowledgements xvii

Part I: Basic Methods and Examples 1

Chapter 1. Introduction to Finite Markov Chains 3
 1.1. Finite Markov Chains 3
 1.2. Random Mapping Representation 6
 1.3. Irreducibility and Aperiodicity 8
 1.4. Random Walks on Graphs 9
 1.5. Stationary Distributions 10
 1.6. Reversibility and Time Reversals 14
 1.7. Classifying the States of a Markov Chain* 16
 Exercises 18
 Notes 20

Chapter 2. Classical (and Useful) Markov Chains 21
 2.1. Gambler’s Ruin 21
 2.2. Coupon Collecting 22
 2.3. The Hypercube and the Ehrenfest Urn Model 23
 2.4. The Pólya Urn Model 25
 2.5. Birth-and-Death Chains 26
 2.6. Random Walks on Groups 27
 2.7. Random Walks on Z and Reflection Principles 30
 Exercises 34
 Notes 35

Chapter 3. Markov Chain Monte Carlo: Metropolis and Glauber Chains 37
 3.1. Introduction 37
 3.2. Metropolis Chains 37
 3.3. Glauber Dynamics 40
 Exercises 44
 Notes 44

Chapter 4. Introduction to Markov Chain Mixing 47
 4.1. Total Variation Distance 47
4.2. Coupling and Total Variation Distance 49
4.3. The Convergence Theorem 52
4.4. Standardizing Distance from Stationarity 53
4.5. Mixing Time 55
4.6. Mixing and Time Reversal 55
4.7. Ergodic Theorem* 58
Exercises 59
Notes 60

Chapter 5. Coupling 63
5.1. Definition 63
5.2. Bounding Total Variation Distance 64
5.3. Examples 65
5.4. Grand Couplings 70
Exercises 73
Notes 74

Chapter 6. Strong Stationary Times 75
6.1. Top-to-Random Shuffle 75
6.2. Definitions 76
6.3. Achieving Equilibrium 77
6.4. Strong Stationary Times and Bounding Distance 78
6.5. Examples 80
6.6. Stationary Times and Cesaro Mixing Time* 83
Exercises 84
Notes 85

Chapter 7. Lower Bounds on Mixing Times 87
7.1. Counting and Diameter Bounds 87
7.2. Bottleneck Ratio 88
7.3. Distinguishing Statistics 92
7.4. Examples 96
Exercises 98
Notes 98

Chapter 8. The Symmetric Group and Shuffling Cards 99
8.1. The Symmetric Group 99
8.2. Random Transpositions 101
8.3. Riffle Shuffles 106
Exercises 109
Notes 111

Chapter 9. Random Walks on Networks 115
9.1. Networks and Reversible Markov Chains 115
9.2. Harmonic Functions 116
9.3. Voltages and Current Flows 117
9.4. Effective Resistance 118
9.5. Escape Probabilities on a Square 123
Exercises 124
Notes 125
Chapter 10. Hitting Times 127
10.1. Definition 127
10.2. Random Target Times 128
10.3. Commute Time 130
10.4. Hitting Times for the Torus 133
10.5. Bounding Mixing Times via Hitting Times 134
10.6. Mixing for the Walk on Two Glued Graphs 138
Exercises 139
Notes 141

Chapter 11. Cover Times 143
11.1. Cover Times 143
11.2. The Matthews Method 143
11.3. Applications of the Matthews Method 147
Exercises 151
Notes 152

Chapter 12. Eigenvalues 153
12.1. The Spectral Representation of a Reversible Transition Matrix 153
12.2. The Relaxation Time 154
12.3. Eigenvalues and Eigenfunctions of Some Simple Random Walks 156
12.4. Product Chains 160
12.5. An ℓ^2 Bound 163
12.6. Time Averages 165
Exercises 167
Notes 168

Part II: The Plot Thickens 169

Chapter 13. Eigenfunctions and Comparison of Chains 171
13.1. Bounds on Spectral Gap via Contractions 171
13.2. Wilson’s Method for Lower Bounds 172
13.3. The Dirichlet Form and the Bottleneck Ratio 175
13.4. Simple Comparison of Markov Chains 179
13.5. The Path Method 182
13.6. Expander Graphs* 185
Exercises 187
Notes 187

Chapter 14. The Transportation Metric and Path Coupling 189
14.1. The Transportation Metric 189
14.2. Path Coupling 191
14.3. Fast Mixing for Colorings 193
14.4. Approximate Counting 195
Exercises 198
Notes 199

Chapter 15. The Ising Model 201
15.1. Fast Mixing at High Temperature 201
15.2. The Complete Graph 203