Contents

- de c	Part	1:	Mathematics	of	Origami
--------	------	----	-------------	----	---------

Acknowledgments	xiii
Introduction	XV

I. Mathematics of Origami: Coloring

Coloring Connections with Counting Mountain-Valley Assignments THOMAS C. HULL	3
Color Symmetry Approach to the Construction of Crystallographic Flat Origami	
Ma. Louise Antonette N. De las Peñas, Eduard C. Taganap, and Teofina A. Rapanut	11
Symmetric Colorings of Polypolyhedra SARAH-MARIE BELCASTRO AND THOMAS C. HULL	21
II. Mathematics of Origami: Constructibility	
Geometric and Arithmetic Relations Concerning Origami Jordi Guàrdia and Eulàlia Tramuns	35
Abelian and Non-Abelian Numbers via 3D Origami José Ignacio Royo Prieto and Eulàlia Tramuns	45
Interactive Construction and Automated Proof in Eos System with Application to Knot Fold of Regular Polygons FADOUA GHOURABI, TETSUO IDA, AND KAZUKO TAKAHASHI	55
Equal Division on Any Polygon Side by Folding SY CHEN	67
A Survey and Recent Results about Common Developments of Two or More Boxes	
Ryuhei Uehara	77
Unfolding Simple Folds from Crease Patterns Hugo A. Akitaya, Jun Mitani, Yoshihiro Kanamori, and Yukio Fukui	85

III. Mathematics of Origami: Rigid Foldability

Rigid Folding of Periodic Origami Tessellations TOMOHIRO TACHI	97
Rigid Flattening of Polyhedra with Slits Zachary Abel, Robert Connelly, Erik D. Demaine, Martin L. Demaine, Thomas C. Hull, Anna Lubiw, and Tomohiro Tachi	109
Rigidly Foldable Origami Twists THOMAS A. EVANS, ROBERT J. LANG, SPENCER P. MAGLEBY, AND LAN L. HOWELL	rry 119
Locked Rigid Origami with Multiple Degrees of Freedom ZACHARY ABEL, THOMAS C. HULL, AND TOMOHIRO TACHI	131
Screw Algebra Based Kinematic and Static Modeling of Origami-Inspired Mechanisms KETAO ZHANG, CHEN QIU, AND JIAN S. DAI	139
Thick Rigidly Foldable Structures Realized by an Offset Panel Technique BRYCE J. EDMONDSON, ROBERT J. LANG, MICHAEL R. MORGAN, SPEN P. MAGLEBY, AND LARRY L. HOWELL	CER 149
Configuration Transformation and Mathematical Description of Manipulation of Origami Cartons JIAN S. DAI	163

IV. Mathematics of Origami: Design Algorithms

Filling a Hole in a Crease Pattern: Isometric Mapping from Prescribed Boundary Folding ERIK D. DEMAINE AND JASON S. KU 1'	.77
Spiderwebs, Tilings, and Flagstone Tessellations ROBERT J. LANG 12	.89
Scaling Any Surface Down to Any Fraction Erik D. Demaine, Martin L. Demaine, and Kayhan F. Qaiser 24	201
Characterization of Curved Creases and Rulings: Design and Analysis of Lens Tessellations ERIK D. DEMAINE, MARTIN L. DEMAINE, DAVID A. HUFFMAN, DUKS KOSCHITZ, AND TOMOHIRO TACHI 24	209
Curve-Folding Polyhedra Skeletons through Smoothing SURYANSH CHANDRA, SHAJAY BHOOSHAN, AND MUSTAFA EL-SAYED 2	231
Design Methods of Origami Tessellations for Triangular Spiral Multiple Tilings TAKAMICHI SUSHIDA, AKIO HIZUME, AND YOSHIKAZU YAMAGISHI 2-	241
A New Scheme to Describe Twist-Fold Tessellations THOMAS R. CRAIN 22	253

|--|

Weaving a Uniformly Thick Sheet from Rectangles ELI DAVIS, ERIK D. DEMAINE, MARTIN L. DEMAINE, AND JENNIFER	0.05
RAMSEYER	265
Extruding Towers by Serially Grafting Prismoids HERNG YI CHENG	275
On Pleat Rearrangements in Pureland Tessellations GORAN KONJEVOD	293
Graph Paper for Polygon-Packed Origami Design ROBERT J. LANG AND ROGER C. ALPERIN	305
A Method to Fold Generalized Bird Bases from a Given Quadrilateral Containing an Inscribed Circle TOSHIKAZU KAWASAKI	319
Pentasia: An Aperiodic Origami Surface ROBERT J. LANG AND BARRY HAYES	329
Base Design of a Snowflake Curve Model and Its Difficulties USHIO IKEGAMI	339
Two Calculations for Geodesic Modular Works MIYUKI KAWAMURA	357
Index	I-1

Part 2: Origami in Technology, Science, Art, Design, History, and Education

Acknowledgments	xiii
Introduction	XV

V. Origami in Technology and Science

Comparison of Compressive Properties of Periodic Non-flat Tessellations YVES KLETT, MARC GRZESCHIK, AND PETER MIDDENDORF	371
Numerical Analysis of Origami Structures through Modified Frame Elements KAZUKO FUCHI, PHILIP R. BUSKOHL, JAMES J. JOO, GREGORY W. REI AND RICHARD A. VAIA	існ, 385
A Study on Crash Energy Absorption Ability of Lightweight Structures with Truss Core Panel YANG YANG, XILU ZHAO, SUNAO TOKURA, AND ICHIROU HAGIWARA	397
Toward Optimization of Stiffness and Flexibility of Rigid, Flat-Foldable Origami Structures EVGUENI T. FILIPOV, TOMOHIRO TACHI, AND GLAUCIO H. PAULINO	409

 $\mathbf{i}\mathbf{x}$

CONTENTS

21
31
39
17
59
71
79
39
,)1
13
23
37
۶, 1 15
57

VI. Origami in Art, Design, and History

Modeling Vaults in Origami: A Bridge between Mathematics and Architecture CATERINA CUMINO, EMMA FRIGERIO, SIMONA GALLINA, MARIA LUISA SPREAFICO, AND URSULA ZICH	, 571
Folding Perspectives: Joys and Uses of 3D Anamorphic Origami YVES KLETT	583
Master Peace: An Evolution of Monumental Origami KEVIN BOX AND ROBERT J. LANG	601
Wearable Metal Origami TINE DE RUYSSER	613
Crowdsourcing Origami Sculptures JEANNINE MOSELY	625
On the Aesthetics of Folding and Technology: Scale, Dimensionality, and Materiality MATTHEW GARDINER	635
Computational Problems Related to Paper Crane in the Edo Period JUN MAEKAWA	647
Mitate and Origami Koshiro Hatori	657
VII. Origami in Education	
The Kindergarten Origametria Program Miri Golan and John Oberman	669
Area and Optimization Problems EMMA FRIGERIO AND MARIA LUISA SPREAFICO	679
Mathematics and Art through the Cuboctahedron SHI-PUI KWAN	689
Origami-Inspired Deductive Threads in Pre-geometry ARNOLD TUBIS	699
Using Paper Folding to Solve Problems in School Geometry YANPING HUANG AND PENG-YEE LEE	713
Using Origami to Enrich Mathematical Understanding of Self Similarity and Fractals	793
Using the Fujimoto Approximation Technique to Teach Chaos Theory to High	1 20
LEON POLADIAN	735
Index	I-1