24 2. Basic notions of representation theory
Example 2.9.8. Some examples of representations of Lie algebras
are:
(1) V = 0.
(2) Any vector space V with ρ = 0 (the trivial representation).
(3) The adjoint representation V = g with ρ(a)(b) := [a, b].
That this is a representation follows from equation (2.9.1).
Thus, the meaning of the Jacobi identity is that it is equiv-
alent to the existence of the adjoint representation.
It turns out that a representation of a Lie algebra g is the same
thing as a representation of a certain associative algebra U(g). Thus,
as with quivers, we can view the theory of representations of Lie alge-
bras as a part of the theory of representations of associative algebras.
Definition 2.9.9. Let g be a Lie algebra with basis xi and [ , ]
defined by [xi,xj] =

k
cijxk. k The universal enveloping algebra
U(g) is the associative algebra generated by the xi’s with the defining
relations xixj xjxi =

k
cijxk.k
Remark 2.9.10. This is not a very good definition since it depends
on the choice of a basis. Later we will give an equivalent definition
which will be basis-independent.
Exercise 2.9.11. Explain why a representation of a Lie algebra is
the same thing as a representation of its universal enveloping algebra.
Example 2.9.12. The associative algebra U(sl(2)) is the algebra
generated by e, f, h, with relations
he eh = 2e, hf fh = −2f, ef fe = h.
Example 2.9.13. The algebra U(H), where H is the Heisenberg Lie
algebra, is the algebra generated by x, y, c with the relations
yx xy = c, yc cy = 0, xc cx = 0.
Note that the Weyl algebra is the quotient of U(H) by the relation
c = 1.
Remark 2.9.14. Lie algebras were introduced by Sophus Lie (see
Section 2.10) as an infinitesimal version of Lie groups (in early texts
Previous Page Next Page