List of Tables
Chapter 1
1.8. Irreducible reduced crystallographic root systems 12
1.12.5. Centers of universal Chevalley groups 19
1.12.6. Generators of Z(K) 20
1.15.2d. Graph automorphisms and their centralizers 28
Chapter 2
2.2. Orders of the finite groups of Lie type 39
2.3.2d. Twisted root systems 42
2.4. Structure of root groups X& 46
2.4.7. Elements of Cartan subgroups 51
2.5.12c. Structure of Outdiag(if) 58
Chapter 3
3.3.1. Equicharacteristic ranks of groups of Lie type 108
3.3.2. Cardinalities of abelian sets of roots 112
Chapter 4
4.3.1. Inn(if) -conjugacy classes of involutions in Auto (if),
an^
their cen-
tralizers 145
4.3.2. Centers of centralizers of involutions in Auto (if) 149
4.3.3. Connected centralizers of involutions in Auto (if) 151
4.3.4. Action of elements of V-^ on centralizers of involutions 152
4.5.1. Inner-diagonal and graph involutions for adjoint groups in Lieir),
r odd 172
4.5.2. Inner-diagonal and graph involutions for universal groups in £ie(r),
r odd 178
4.5.3. Inner-diagonal and graph involutions for ^|
m
(g) = D^q), q odd 182
4.5.5. Fundamental involutions 185
4.7.1. Inn(if)-conjugacy classes of subgroups of order p in exceptional
groups Auto (if), their centralizers and normalizers 206
4.7.2. Action of elements of T-^ on centralizers in exceptional groups if 208
4.7.3A. Conjugacy classes and centralizers of subgroups of order 3 for ex-
ceptional groups in Lie(r) 210
4.7.3B. Conjugacy classes and centralizers of subgroups of order 5 in E$(q) 211
4.10.6. Maximal commuting sets S(P) of fundamental subgroups, K G
ehev(r), r odd 244
Previous Page Next Page