Softcover ISBN: | 978-0-8218-3846-4 |
Product Code: | CMIP/6 |
List Price: | $60.00 |
MAA Member Price: | $54.00 |
AMS Member Price: | $48.00 |
Softcover ISBN: | 978-0-8218-3846-4 |
Product Code: | CMIP/6 |
List Price: | $60.00 |
MAA Member Price: | $54.00 |
AMS Member Price: | $48.00 |
-
Book DetailsClay Mathematics ProceedingsVolume: 6; 2006; 189 ppMSC: Primary 46; 58
In June 2000, the Clay Mathematics Institute organized an Instructional Symposium on Noncommutative Geometry in conjunction with the AMS-IMS-SIAM Joint Summer Research Conference. These events were held at Mount Holyoke College in Massachusetts from June 18 to 29, 2000. The Instructional Symposium consisted of several series of expository lectures which were intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Those expository lectures have been edited and are reproduced in this volume.
The lectures of Rosenberg and Weinberger discuss various applications of noncommutative geometry to problems in “ordinary” geometry and topology. The lectures of Lagarias and Tretkoff discuss the Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory. Higson gives an account of the “residue index theorem” of Connes and Moscovici.
Noncommutative geometry is to an unusual extent the creation of a single mathematician, Alain Connes. The present volume gives an extended introduction to several aspects of Connes' work in this fascinating area.
Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
ReadershipGraduate students and research mathematicians interested in noncommutative geometry.
-
Additional Material
-
RequestsReview Copy – for publishers of book reviewsAccessibility – to request an alternate format of an AMS title
- Book Details
- Additional Material
- Requests
In June 2000, the Clay Mathematics Institute organized an Instructional Symposium on Noncommutative Geometry in conjunction with the AMS-IMS-SIAM Joint Summer Research Conference. These events were held at Mount Holyoke College in Massachusetts from June 18 to 29, 2000. The Instructional Symposium consisted of several series of expository lectures which were intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Those expository lectures have been edited and are reproduced in this volume.
The lectures of Rosenberg and Weinberger discuss various applications of noncommutative geometry to problems in “ordinary” geometry and topology. The lectures of Lagarias and Tretkoff discuss the Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory. Higson gives an account of the “residue index theorem” of Connes and Moscovici.
Noncommutative geometry is to an unusual extent the creation of a single mathematician, Alain Connes. The present volume gives an extended introduction to several aspects of Connes' work in this fascinating area.
Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
Graduate students and research mathematicians interested in noncommutative geometry.