Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Axiomatic Set Theory
 
Axiomatic Set Theory
eBook ISBN:  978-0-8218-7616-9
Product Code:  CONM/31.E
List Price: $125.00
MAA Member Price: $112.50
AMS Member Price: $100.00
Axiomatic Set Theory
Click above image for expanded view
Axiomatic Set Theory
eBook ISBN:  978-0-8218-7616-9
Product Code:  CONM/31.E
List Price: $125.00
MAA Member Price: $112.50
AMS Member Price: $100.00
  • Book Details
     
     
    Contemporary Mathematics
    Volume: 311984; 259 pp
    MSC: Primary 03; Secondary 06
  • Table of Contents
     
     
    • Articles
    • Irving H. Anellis — Russell’s earliest reactions to Cantorian set theory, 1896–1900 [ MR 763888 ]
    • Howard S. Becker and Alexander S. Kechris — Sets of ordinals constructible from trees and the third Victoria Delfino problem [ MR 763889 ]
    • Andreas Blass — Existence of bases implies the axiom of choice [ MR 763890 ]
    • Andreas Blass — Small extensions of models of set theory [ MR 763891 ]
    • Tim Carlson — The pin-up conjecture [ MR 763892 ]
    • René David — Generic reals close to $0^{\sharp }$ [ MR 763893 ]
    • Hans-Dieter Donder — Families of almost disjoint functions [ MR 763894 ]
    • William G. Fleissner — Homomorphism axioms and lynxes [ MR 763895 ]
    • Sy D. Friedman — Infinitary logic and $0^{\sharp }$ [ MR 763896 ]
    • J. M. Henle — An extravagant partition relation for a model of arithmetic [ MR 763897 ]
    • Thomas Jech — Stationary subsets of inaccessible cardinals [ MR 763898 ]
    • Arnold W. Miller — Rational perfect set forcing [ MR 763899 ]
    • William Mitchell — Indiscernibles, skies, and ideals [ MR 763900 ]
    • Saharon Shelah — On cardinal invariants of the continuum [ MR 763901 ]
    • Stevo Todorčević — A note on the proper forcing axiom [ MR 763902 ]
    • Dan Velleman — Souslin trees constructed from morasses [ MR 763903 ]
    • William S. Zwicker — $P_k\lambda $ combinatorics. I. Stationary coding sets rationalize the club filter [ MR 763904 ]
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 311984; 259 pp
MSC: Primary 03; Secondary 06
  • Articles
  • Irving H. Anellis — Russell’s earliest reactions to Cantorian set theory, 1896–1900 [ MR 763888 ]
  • Howard S. Becker and Alexander S. Kechris — Sets of ordinals constructible from trees and the third Victoria Delfino problem [ MR 763889 ]
  • Andreas Blass — Existence of bases implies the axiom of choice [ MR 763890 ]
  • Andreas Blass — Small extensions of models of set theory [ MR 763891 ]
  • Tim Carlson — The pin-up conjecture [ MR 763892 ]
  • René David — Generic reals close to $0^{\sharp }$ [ MR 763893 ]
  • Hans-Dieter Donder — Families of almost disjoint functions [ MR 763894 ]
  • William G. Fleissner — Homomorphism axioms and lynxes [ MR 763895 ]
  • Sy D. Friedman — Infinitary logic and $0^{\sharp }$ [ MR 763896 ]
  • J. M. Henle — An extravagant partition relation for a model of arithmetic [ MR 763897 ]
  • Thomas Jech — Stationary subsets of inaccessible cardinals [ MR 763898 ]
  • Arnold W. Miller — Rational perfect set forcing [ MR 763899 ]
  • William Mitchell — Indiscernibles, skies, and ideals [ MR 763900 ]
  • Saharon Shelah — On cardinal invariants of the continuum [ MR 763901 ]
  • Stevo Todorčević — A note on the proper forcing axiom [ MR 763902 ]
  • Dan Velleman — Souslin trees constructed from morasses [ MR 763903 ]
  • William S. Zwicker — $P_k\lambda $ combinatorics. I. Stationary coding sets rationalize the club filter [ MR 763904 ]
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.