Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Selected Works of Ellis Kolchin with Commentary
 
Edited by: Hyman Bass Columbia University, New York, NY
Alexandru Buium University of New Mexico, Albuquerque, NM
Phyllis J. Cassidy Smith College, Northampton, MA
Selected Works of Ellis Kolchin with Commentary
Hardcover ISBN:  978-0-8218-0542-8
Product Code:  CWORKS/12
List Price: $175.00
MAA Member Price: $157.50
AMS Member Price: $140.00
Selected Works of Ellis Kolchin with Commentary
Click above image for expanded view
Selected Works of Ellis Kolchin with Commentary
Edited by: Hyman Bass Columbia University, New York, NY
Alexandru Buium University of New Mexico, Albuquerque, NM
Phyllis J. Cassidy Smith College, Northampton, MA
Hardcover ISBN:  978-0-8218-0542-8
Product Code:  CWORKS/12
List Price: $175.00
MAA Member Price: $157.50
AMS Member Price: $140.00
  • Book Details
     
     
    Collected Works
    Volume: 121999; 639 pp
    MSC: Primary 00; 12; Secondary 03; 11; 13; 14

    The work of Joseph Fels Ritt and Ellis Kolchin in differential algebra paved the way for exciting new applications in constructive symbolic computation, differential Galois theory, the model theory of fields, and Diophantine geometry. This volume assembles Kolchin's mathematical papers, contributing solidly to the archive on construction of modern differential algebra. This collection of Kolchin's clear and comprehensive papers—in themselves constituting a history of the subject—is an invaluable aid to the student of differential algebra.

    In 1910, Ritt created a theory of algebraic differential equations modeled not on the existing transcendental methods of Lie, but rather on the new algebra being developed by E. Noether and B. van der Waerden. Building on Ritt's foundation, and deeply influenced by Weil and Chevalley, Kolchin opened up Ritt theory to modern algebraic geometry. In so doing, he led differential geometry in a new direction. By creating differential algebraic geometry and the theory of differential algebraic groups, Kolchin provided the foundation for a “new geometry” that has led to both a striking and an original approach to arithmetic algebraic geometry. Intriguing possibilities were introduced for a new language for nonlinear differential equations theory.

    The volume includes commentary by A. Borel, M. Singer, and B. Poizat. Also Buium and Cassidy trace the development of Kolchin's ideas, from his important early work on the differential Galois theory to his later groundbreaking results on the theory of differential algebraic geometry and differential algebraic groups. Commentaries are self-contained with numerous examples of various aspects of differential algebra and its applications. Central topics of Kolchin's work are discussed, presenting the history of differential algebra and exploring how his work grew from and transformed the work of Ritt. New directions of differential algebra are illustrated, outlining important current advances. Prerequisite to understanding the text is a background at the beginning graduate level in algebra, specifically commutative algebra, the theory of field extensions, and Galois theory.

    Readership

    Graduate students and research mathematicians working in differential algebra, symbolic computation, differential Galois theory, the model theory of fields, and arithmetic algebraic geometry.

  • Reviews
     
     
    • This book reprints all the published research papers of Ellis Kolchin, as well as some non-archival publications (such as distributed lecture notes), and publishes for the first time a short paper on Painlevé transcendents.

      The volume also contains a nearly 130 page section of commentary, consisting of four expository articles. Taken together, these probably comprise the best introduction and survey of differential algebra currently available. The editors of this volume, and the authors of the articles in the Commentary section, are to be congratulated on not only making the publications of Ellis Kolchin readily available in a single volume format, but also for providing a set of excellent expository articles which will allow newcomers to the field to learn about the main themes in Kolchin's work in differential algebra and to see how those topics have developed mathematically up to the present day.

      Zentralblatt MATH
    • With its relations to such varied fields as algebraic groups, transcendence, model theory, Diophantine geometry, partial differential equations and of course differential algebra itself, this book will be a welcome addition to all mathematical libraries.

      Mathematical Reviews
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Accessibility – to request an alternate format of an AMS title
Volume: 121999; 639 pp
MSC: Primary 00; 12; Secondary 03; 11; 13; 14

The work of Joseph Fels Ritt and Ellis Kolchin in differential algebra paved the way for exciting new applications in constructive symbolic computation, differential Galois theory, the model theory of fields, and Diophantine geometry. This volume assembles Kolchin's mathematical papers, contributing solidly to the archive on construction of modern differential algebra. This collection of Kolchin's clear and comprehensive papers—in themselves constituting a history of the subject—is an invaluable aid to the student of differential algebra.

In 1910, Ritt created a theory of algebraic differential equations modeled not on the existing transcendental methods of Lie, but rather on the new algebra being developed by E. Noether and B. van der Waerden. Building on Ritt's foundation, and deeply influenced by Weil and Chevalley, Kolchin opened up Ritt theory to modern algebraic geometry. In so doing, he led differential geometry in a new direction. By creating differential algebraic geometry and the theory of differential algebraic groups, Kolchin provided the foundation for a “new geometry” that has led to both a striking and an original approach to arithmetic algebraic geometry. Intriguing possibilities were introduced for a new language for nonlinear differential equations theory.

The volume includes commentary by A. Borel, M. Singer, and B. Poizat. Also Buium and Cassidy trace the development of Kolchin's ideas, from his important early work on the differential Galois theory to his later groundbreaking results on the theory of differential algebraic geometry and differential algebraic groups. Commentaries are self-contained with numerous examples of various aspects of differential algebra and its applications. Central topics of Kolchin's work are discussed, presenting the history of differential algebra and exploring how his work grew from and transformed the work of Ritt. New directions of differential algebra are illustrated, outlining important current advances. Prerequisite to understanding the text is a background at the beginning graduate level in algebra, specifically commutative algebra, the theory of field extensions, and Galois theory.

Readership

Graduate students and research mathematicians working in differential algebra, symbolic computation, differential Galois theory, the model theory of fields, and arithmetic algebraic geometry.

  • This book reprints all the published research papers of Ellis Kolchin, as well as some non-archival publications (such as distributed lecture notes), and publishes for the first time a short paper on Painlevé transcendents.

    The volume also contains a nearly 130 page section of commentary, consisting of four expository articles. Taken together, these probably comprise the best introduction and survey of differential algebra currently available. The editors of this volume, and the authors of the articles in the Commentary section, are to be congratulated on not only making the publications of Ellis Kolchin readily available in a single volume format, but also for providing a set of excellent expository articles which will allow newcomers to the field to learn about the main themes in Kolchin's work in differential algebra and to see how those topics have developed mathematically up to the present day.

    Zentralblatt MATH
  • With its relations to such varied fields as algebraic groups, transcendence, model theory, Diophantine geometry, partial differential equations and of course differential algebra itself, this book will be a welcome addition to all mathematical libraries.

    Mathematical Reviews
Review Copy – for publishers of book reviews
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.