Hardcover ISBN: | 978-3-03719-062-3 |
Product Code: | EMSSCR/1 |
List Price: | $138.00 |
AMS Member Price: | $110.40 |
Hardcover ISBN: | 978-3-03719-062-3 |
Product Code: | EMSSCR/1 |
List Price: | $138.00 |
AMS Member Price: | $110.40 |
-
Book DetailsEMS Series of Congress ReportsVolume: 1; 2008; 722 ppMSC: Primary 16; 03; 05; 13; 14
This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development.
The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen–Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander–Reiten theory, Calabi–Yau triangulated categories, Poincaré duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory.
This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
ReadershipGraduate students and research mathematicians interested in representation theory.
-
RequestsReview Copy – for publishers of book reviewsAccessibility – to request an alternate format of an AMS title
- Book Details
- Requests
This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development.
The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen–Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander–Reiten theory, Calabi–Yau triangulated categories, Poincaré duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory.
This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
Graduate students and research mathematicians interested in representation theory.