Hardcover ISBN: | 978-3-03719-159-0 |
Product Code: | EMSTEXT/18 |
List Price: | $58.00 |
AMS Member Price: | $46.40 |
Hardcover ISBN: | 978-3-03719-159-0 |
Product Code: | EMSTEXT/18 |
List Price: | $58.00 |
AMS Member Price: | $46.40 |
-
Book DetailsEMS Textbooks in MathematicsVolume: 18; 2016; 363 ppMSC: Primary 28; Secondary 35; 43; 44; 46
The book is intended as a companion to a one-semester introductory lecture course on measure and integration. After an introduction to abstract measure theory, it proceeds to the construction of the Lebesgue measure and of Borel measures on locally compact Hausdorff spaces, \(L^p\) spaces and their dual spaces, and elementary Hilbert space theory.
Special features include the formulation of the Riesz representation theorem in terms of both inner and outer regularity, the proofs of the Marcinkiewicz interpolation theorem, and the Calderon–Zygmund inequality as applications of Fubini's theorem and Lebesgue differentiation, the treatment of the generalized Radon–Nikodym theorem due to Fremlin, and the existence proof for Haar measures. Three appendices deal with Urysohn's Lemma, product topologies, and the inverse function theorem.
The book assumes familiarity with first-year analysis and linear algebra. It is suitable for second-year undergraduate students of mathematics or anyone seeking an introduction to the concepts of measure and integration.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
ReadershipSecond-year undergraduate students of mathematics or anyone seeking an introduction to the concepts of measure and integration.
-
Additional Material
-
RequestsReview Copy – for publishers of book reviewsAccessibility – to request an alternate format of an AMS title
- Book Details
- Additional Material
- Requests
The book is intended as a companion to a one-semester introductory lecture course on measure and integration. After an introduction to abstract measure theory, it proceeds to the construction of the Lebesgue measure and of Borel measures on locally compact Hausdorff spaces, \(L^p\) spaces and their dual spaces, and elementary Hilbert space theory.
Special features include the formulation of the Riesz representation theorem in terms of both inner and outer regularity, the proofs of the Marcinkiewicz interpolation theorem, and the Calderon–Zygmund inequality as applications of Fubini's theorem and Lebesgue differentiation, the treatment of the generalized Radon–Nikodym theorem due to Fremlin, and the existence proof for Haar measures. Three appendices deal with Urysohn's Lemma, product topologies, and the inverse function theorem.
The book assumes familiarity with first-year analysis and linear algebra. It is suitable for second-year undergraduate students of mathematics or anyone seeking an introduction to the concepts of measure and integration.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
Second-year undergraduate students of mathematics or anyone seeking an introduction to the concepts of measure and integration.