Hardcover ISBN: | 978-3-03719-190-3 |
Product Code: | EMSTM/30 |
List Price: | $98.00 |
AMS Member Price: | $78.40 |
Hardcover ISBN: | 978-3-03719-190-3 |
Product Code: | EMSTM/30 |
List Price: | $98.00 |
AMS Member Price: | $78.40 |
-
Book DetailsEMS Tracts in MathematicsVolume: 30; 2018; 441 ppMSC: Primary 35; 31
This book is a detailed exposition of the author and his collaborators' work on boundedness, continuity, and differentiability properties of solutions to elliptic equations in general domains, that is, in domains that are not a priori restricted by assumptions such as “piecewise smoothness” or being a “Lipschitz graph”.
The description of the boundary behavior of such solutions is one of the most difficult problems in the theory of partial differential equations. After the famous Wiener test, the main contributions to this area were made by the author. In particular, necessary and sufficient conditions for the validity of imbedding theorems are given, which provide criteria for the unique solvability of boundary value problems of second and higher order elliptic equations. Another striking result is a test for the regularity of a boundary point for polyharmonic equations.
This book will be interesting and useful for a wide audience. It is intended for specialists and graduate students working in the theory of partial differential equations.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
ReadershipGraduate students and researchers interested in the theory of partial differential equations.
-
Additional Material
-
RequestsReview Copy – for publishers of book reviewsAccessibility – to request an alternate format of an AMS title
- Book Details
- Additional Material
- Requests
This book is a detailed exposition of the author and his collaborators' work on boundedness, continuity, and differentiability properties of solutions to elliptic equations in general domains, that is, in domains that are not a priori restricted by assumptions such as “piecewise smoothness” or being a “Lipschitz graph”.
The description of the boundary behavior of such solutions is one of the most difficult problems in the theory of partial differential equations. After the famous Wiener test, the main contributions to this area were made by the author. In particular, necessary and sufficient conditions for the validity of imbedding theorems are given, which provide criteria for the unique solvability of boundary value problems of second and higher order elliptic equations. Another striking result is a test for the regularity of a boundary point for polyharmonic equations.
This book will be interesting and useful for a wide audience. It is intended for specialists and graduate students working in the theory of partial differential equations.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
Graduate students and researchers interested in the theory of partial differential equations.