Softcover ISBN: | 978-3-03719-173-6 |
Product Code: | EMSZLEC/23 |
List Price: | $38.00 |
AMS Member Price: | $30.40 |
Softcover ISBN: | 978-3-03719-173-6 |
Product Code: | EMSZLEC/23 |
List Price: | $38.00 |
AMS Member Price: | $30.40 |
-
Book DetailsEMS Zurich Lectures in Advanced MathematicsVolume: 23; 2017; 160 ppMSC: Primary 62; 91; Secondary 60
A classical topic in mathematical finance is the theory of portfolio optimization. Robert Merton's work from the early seventies had enormous impact on academic research as well as on the paradigms guiding practitioners. One of the ramifications of this topic is the analysis of (small) proportional transaction costs, such as a Tobin tax.
These lecture notes present some striking recent results of the asymptotic dependence of the relevant quantities when transaction costs tend to zero. An appealing feature of the consideration of transaction costs is that it allows us for the first time to reconcile the no arbitrage paradigm with the use of non-semimartingale models, such as fractional Brownian motion. This leads to the culminating theorem of the present lectures, which roughly reads as follows: For a fractional Brownian motion stock price model we always find a shadow price process for given transaction costs. This process is a semimartingale and can therefore be dealt with using the usual machinery of mathematical finance.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
ReadershipGraduate students and researchers interested in portfolio optimization.
-
Additional Material
-
RequestsReview Copy – for publishers of book reviewsAccessibility – to request an alternate format of an AMS title
- Book Details
- Additional Material
- Requests
A classical topic in mathematical finance is the theory of portfolio optimization. Robert Merton's work from the early seventies had enormous impact on academic research as well as on the paradigms guiding practitioners. One of the ramifications of this topic is the analysis of (small) proportional transaction costs, such as a Tobin tax.
These lecture notes present some striking recent results of the asymptotic dependence of the relevant quantities when transaction costs tend to zero. An appealing feature of the consideration of transaction costs is that it allows us for the first time to reconcile the no arbitrage paradigm with the use of non-semimartingale models, such as fractional Brownian motion. This leads to the culminating theorem of the present lectures, which roughly reads as follows: For a fractional Brownian motion stock price model we always find a shadow price process for given transaction costs. This process is a semimartingale and can therefore be dealt with using the usual machinery of mathematical finance.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
Graduate students and researchers interested in portfolio optimization.