Hardcover ISBN: | 978-0-8218-3801-3 |
Product Code: | GSM/2 |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $55.20 |
eBook ISBN: | 978-1-4704-2065-9 |
Product Code: | GSM/2.E |
List Price: | $55.00 |
MAA Member Price: | $49.50 |
AMS Member Price: | $44.00 |
Hardcover ISBN: | 978-0-8218-3801-3 |
eBook: ISBN: | 978-1-4704-2065-9 |
Product Code: | GSM/2.B |
List Price: | $124.00 $96.50 |
MAA Member Price: | $111.60 $86.85 |
AMS Member Price: | $99.20 $77.20 |
Hardcover ISBN: | 978-0-8218-3801-3 |
Product Code: | GSM/2 |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $55.20 |
eBook ISBN: | 978-1-4704-2065-9 |
Product Code: | GSM/2.E |
List Price: | $55.00 |
MAA Member Price: | $49.50 |
AMS Member Price: | $44.00 |
Hardcover ISBN: | 978-0-8218-3801-3 |
eBook ISBN: | 978-1-4704-2065-9 |
Product Code: | GSM/2.B |
List Price: | $124.00 $96.50 |
MAA Member Price: | $111.60 $86.85 |
AMS Member Price: | $99.20 $77.20 |
-
Book DetailsGraduate Studies in MathematicsVolume: 2; 1993; 172 ppMSC: Primary 05
This book presents rigidity theory in a historical context. The combinatorial aspects of rigidity are isolated and framed in terms of a special class of matroids, which are a natural generalization of the connectivity matroid of a graph. This book includes an introduction to matroid theory and an extensive study of planar rigidity. The final chapter is devoted to higher-dimensional rigidity, highlighting the main open questions. Also included is an extensive annotated bibliography with over 150 entries. This book is aimed at graduate students and researchers in graph theory and combinatorics or in fields which apply the structural aspects of these subjects in architecture and engineering. Accessible to those who have had an introduction to graph theory at the senior or graduate level, this book is suitable for a graduate course in graph theory.
ReadershipGraduate students and researchers in graph theory and combinatorics or in fields which apply the structural aspects of these subjects in architecture and engineering.
-
Table of Contents
-
Chapters
-
Chapter 1. Overview
-
Chapter 2. Infinitesimal rigidity
-
Chapter 3. Matroid theory
-
Chapter 4. Linear and planar rigidity
-
Chapter 5. Rigidity in higher dimensions
-
-
Reviews
-
Suggested for a second graduate course in combinatorics ... can excellently be used for it due to the large number of figures, exercises, to an extensive bibliography, and, last but not least, to its style, to the very clear way of presentation, etc.
Zentralblatt MATH -
A very useful guide to the literature is provided by a list of 168 references, of which 97 have brief informative annotations.
Mathematical Reviews
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Reviews
- Requests
This book presents rigidity theory in a historical context. The combinatorial aspects of rigidity are isolated and framed in terms of a special class of matroids, which are a natural generalization of the connectivity matroid of a graph. This book includes an introduction to matroid theory and an extensive study of planar rigidity. The final chapter is devoted to higher-dimensional rigidity, highlighting the main open questions. Also included is an extensive annotated bibliography with over 150 entries. This book is aimed at graduate students and researchers in graph theory and combinatorics or in fields which apply the structural aspects of these subjects in architecture and engineering. Accessible to those who have had an introduction to graph theory at the senior or graduate level, this book is suitable for a graduate course in graph theory.
Graduate students and researchers in graph theory and combinatorics or in fields which apply the structural aspects of these subjects in architecture and engineering.
-
Chapters
-
Chapter 1. Overview
-
Chapter 2. Infinitesimal rigidity
-
Chapter 3. Matroid theory
-
Chapter 4. Linear and planar rigidity
-
Chapter 5. Rigidity in higher dimensions
-
Suggested for a second graduate course in combinatorics ... can excellently be used for it due to the large number of figures, exercises, to an extensive bibliography, and, last but not least, to its style, to the very clear way of presentation, etc.
Zentralblatt MATH -
A very useful guide to the literature is provided by a list of 168 references, of which 97 have brief informative annotations.
Mathematical Reviews