Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Fourier Analysis
 
Javier Duoandikoetxea Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
Fourier Analysis
Softcover ISBN:  978-1-4704-7689-2
Product Code:  GSM/29.S
List Price: $89.00
MAA Member Price: $80.10
AMS Member Price: $71.20
Sale Price: $57.85
eBook ISBN:  978-1-4704-1145-9
Product Code:  GSM/29.E
List Price: $85.00
MAA Member Price: $76.50
AMS Member Price: $68.00
Sale Price: $55.25
Softcover ISBN:  978-1-4704-7689-2
eBook: ISBN:  978-1-4704-1145-9
Product Code:  GSM/29.S.B
List Price: $174.00 $131.50
MAA Member Price: $156.60 $118.35
AMS Member Price: $139.20 $105.20
Sale Price: $113.10 $85.48
Fourier Analysis
Click above image for expanded view
Fourier Analysis
Javier Duoandikoetxea Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
Softcover ISBN:  978-1-4704-7689-2
Product Code:  GSM/29.S
List Price: $89.00
MAA Member Price: $80.10
AMS Member Price: $71.20
Sale Price: $57.85
eBook ISBN:  978-1-4704-1145-9
Product Code:  GSM/29.E
List Price: $85.00
MAA Member Price: $76.50
AMS Member Price: $68.00
Sale Price: $55.25
Softcover ISBN:  978-1-4704-7689-2
eBook ISBN:  978-1-4704-1145-9
Product Code:  GSM/29.S.B
List Price: $174.00 $131.50
MAA Member Price: $156.60 $118.35
AMS Member Price: $139.20 $105.20
Sale Price: $113.10 $85.48
  • Book Details
     
     
    Graduate Studies in Mathematics
    Volume: 292001; 222 pp
    MSC: Primary 42

    Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autónoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university.

    Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, \(H^1\), \(BMO\) spaces, and the \(T1\) theorem, are discussed.

    Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between \(H^1\), \(BMO\), and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the \(T1\) theorem, which has been of crucial importance in the field.

    This volume has been updated and translated from the Spanish edition that was published in 1995. Minor changes have been made to the core of the book; however, the sections, “Notes and Further Results” have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.

    Readership

    Graduate students and research mathematicians interested in Fourier analysis.

  • Table of Contents
     
     
    • Chapters
    • Chapter 1. Fourier series and integrals
    • Chapter 2. The Hardy-Littlewood maximal function
    • Chapter 3. The Hilbert transform
    • Chapter 4. Singular integrals (I)
    • Chapter 5. Singular integrals (II)
    • Chapter 6. $H^1$ and $BMO$
    • Chapter 7. Weighted inequalities
    • Chapter 8. Littlewood-Paley theory and multipliers
    • Chapter 9. The $T1$ theorem
  • Additional Material
     
     
  • Reviews
     
     
    • This is a great introductory book to Fourier analysis on Euclidean spaces and can serve as a textbook in an introductory graduate course on the subject ... The chapters on the Hardy-Littlewood maximal function and the Hilbert transform are extremely well written ... this is a great book and is highly recommended as an introductory textbook to Fourier analysis. The students will have a lot to benefit from in the simple and quick presentation of the book.

      Mathematical Reviews
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Desk Copy – for instructors who have adopted an AMS textbook for a course
    Examination Copy – for faculty considering an AMS textbook for a course
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 292001; 222 pp
MSC: Primary 42

Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autónoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university.

Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, \(H^1\), \(BMO\) spaces, and the \(T1\) theorem, are discussed.

Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between \(H^1\), \(BMO\), and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the \(T1\) theorem, which has been of crucial importance in the field.

This volume has been updated and translated from the Spanish edition that was published in 1995. Minor changes have been made to the core of the book; however, the sections, “Notes and Further Results” have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.

Readership

Graduate students and research mathematicians interested in Fourier analysis.

  • Chapters
  • Chapter 1. Fourier series and integrals
  • Chapter 2. The Hardy-Littlewood maximal function
  • Chapter 3. The Hilbert transform
  • Chapter 4. Singular integrals (I)
  • Chapter 5. Singular integrals (II)
  • Chapter 6. $H^1$ and $BMO$
  • Chapter 7. Weighted inequalities
  • Chapter 8. Littlewood-Paley theory and multipliers
  • Chapter 9. The $T1$ theorem
  • This is a great introductory book to Fourier analysis on Euclidean spaces and can serve as a textbook in an introductory graduate course on the subject ... The chapters on the Hardy-Littlewood maximal function and the Hilbert transform are extremely well written ... this is a great book and is highly recommended as an introductory textbook to Fourier analysis. The students will have a lot to benefit from in the simple and quick presentation of the book.

    Mathematical Reviews
Review Copy – for publishers of book reviews
Desk Copy – for instructors who have adopted an AMS textbook for a course
Examination Copy – for faculty considering an AMS textbook for a course
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.