Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Introduction to the Theory of Random Processes
 
N. V. Krylov University of Minnesota, Minneapolis, MN
Introduction to the Theory of Random Processes
Hardcover ISBN:  978-0-8218-2985-1
Product Code:  GSM/43
List Price: $99.00
MAA Member Price: $89.10
AMS Member Price: $79.20
Sale Price: $64.35
eBook ISBN:  978-1-4704-2094-9
Product Code:  GSM/43.E
List Price: $85.00
MAA Member Price: $76.50
AMS Member Price: $68.00
Sale Price: $55.25
Hardcover ISBN:  978-0-8218-2985-1
eBook: ISBN:  978-1-4704-2094-9
Product Code:  GSM/43.B
List Price: $184.00 $141.50
MAA Member Price: $165.60 $127.35
AMS Member Price: $147.20 $113.20
Sale Price: $119.60 $91.98
Introduction to the Theory of Random Processes
Click above image for expanded view
Introduction to the Theory of Random Processes
N. V. Krylov University of Minnesota, Minneapolis, MN
Hardcover ISBN:  978-0-8218-2985-1
Product Code:  GSM/43
List Price: $99.00
MAA Member Price: $89.10
AMS Member Price: $79.20
Sale Price: $64.35
eBook ISBN:  978-1-4704-2094-9
Product Code:  GSM/43.E
List Price: $85.00
MAA Member Price: $76.50
AMS Member Price: $68.00
Sale Price: $55.25
Hardcover ISBN:  978-0-8218-2985-1
eBook ISBN:  978-1-4704-2094-9
Product Code:  GSM/43.B
List Price: $184.00 $141.50
MAA Member Price: $165.60 $127.35
AMS Member Price: $147.20 $113.20
Sale Price: $119.60 $91.98
  • Book Details
     
     
    Graduate Studies in Mathematics
    Volume: 432002; 230 pp
    MSC: Primary 60

    This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Itô stochastic equations.

    Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used for spectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining a representation of trajectories through jump measures. The Itô stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures.

    Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used to obtain them.

    With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study.

    Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Hölder Spaces and Introduction to the Theory of Diffusion Processes.

    Readership

    Graduate students and research mathematicians, physicists, and engineers interested in the theory of random processes and its applications.

  • Table of Contents
     
     
    • Chapters
    • Chapter 1. Generalities
    • Chapter 2. The Wiener process
    • Chapter 3. Martingales
    • Chapter 4. Stationary processes
    • Chapter 5. Infinitely divisible processes
    • Chapter 6. Itô stochastic integral
  • Reviews
     
     
    • The book is written in a nice and thorough style. A large number of exercises are contained.

      Zentralblatt MATH
    • An attractive feature of the book, apart from the nice and meticulous style of writing, is that it contains a large number of examples and exercises (and hints for exercises—some of which are certainly quite ambitious and demanding!).

      Mathematical Reviews
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 432002; 230 pp
MSC: Primary 60

This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Itô stochastic equations.

Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used for spectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining a representation of trajectories through jump measures. The Itô stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures.

Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used to obtain them.

With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study.

Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Hölder Spaces and Introduction to the Theory of Diffusion Processes.

Readership

Graduate students and research mathematicians, physicists, and engineers interested in the theory of random processes and its applications.

  • Chapters
  • Chapter 1. Generalities
  • Chapter 2. The Wiener process
  • Chapter 3. Martingales
  • Chapter 4. Stationary processes
  • Chapter 5. Infinitely divisible processes
  • Chapter 6. Itô stochastic integral
  • The book is written in a nice and thorough style. A large number of exercises are contained.

    Zentralblatt MATH
  • An attractive feature of the book, apart from the nice and meticulous style of writing, is that it contains a large number of examples and exercises (and hints for exercises—some of which are certainly quite ambitious and demanding!).

    Mathematical Reviews
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
You may be interested in...
Please select which format for which you are requesting permissions.