Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Some Mathematical Questions in Biology—Muscle Physiology
 
Edited by: Robert M. Miura
Some Mathematical Questions in Biology---Muscle Physiology
Softcover ISBN:  978-0-8218-1166-5
Product Code:  LLSCI/16
List Price: $65.00
MAA Member Price: $58.50
AMS Member Price: $52.00
Some Mathematical Questions in Biology---Muscle Physiology
Click above image for expanded view
Some Mathematical Questions in Biology—Muscle Physiology
Edited by: Robert M. Miura
Softcover ISBN:  978-0-8218-1166-5
Product Code:  LLSCI/16
List Price: $65.00
MAA Member Price: $58.50
AMS Member Price: $52.00
  • Book Details
     
     
    Lectures on Mathematics in the Life Sciences
    Volume: 161986; 234 pp
    MSC: Primary 92

    Currently the outstanding problem in muscle contraction is determining the mechanism for the sliding of actin and myosin filaments. This volume contains papers based on lectures presented at the Seventeenth Annual Symposium on Some Mathematical Questions in Biology which was held in conjunction with the Annual Meeting of the AAAS. The six papers deal with overlapping areas of muscle physiology: cross-bridge dynamics (the mechanism currently receiving most attention), as well as distinctions between striated and cardiac muscles and the control of muscular contractions by action potentials. Focusing on both experimental techniques and theoretical underpinnings, the authors present the recent technological advances that provide an improved database for obtaining a better understanding of the biochemical mechanics and developing better mathematical models.

    In the first article Dr. Hugh E. Huxley reviews current studies of muscle systems which use X-ray diffraction and electron-microscopic analysis. Dr. Even Eisenberg describes how ATP hydrolysis drives muscle contraction via the action of myosin cross-bridges.

    The next two papers contain mathematical studies of muscle contraction. Dr. Michael Propp uses a thermodynamic formalism to predict the physiological properties of muscle. Drs. H. Michael Lacker and Charles S. Peskin develop a mathematical method for working backwards to determine uniquely microscopic properties of the cross-bridges.

    Drs. John W. Krueger and Katsuhiko Tsujioka use light diffraction observations to develop a quantitative understanding of cardiac function from properties of the myofibril and elements of the cross-bridge cycle. In the concluding paper, Dr. Robert S. Eisenberg reviews the current work on the electrical control mechanisms in excitation-contraction coupling which lead to muscle contraction.

    Readership

  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 161986; 234 pp
MSC: Primary 92

Currently the outstanding problem in muscle contraction is determining the mechanism for the sliding of actin and myosin filaments. This volume contains papers based on lectures presented at the Seventeenth Annual Symposium on Some Mathematical Questions in Biology which was held in conjunction with the Annual Meeting of the AAAS. The six papers deal with overlapping areas of muscle physiology: cross-bridge dynamics (the mechanism currently receiving most attention), as well as distinctions between striated and cardiac muscles and the control of muscular contractions by action potentials. Focusing on both experimental techniques and theoretical underpinnings, the authors present the recent technological advances that provide an improved database for obtaining a better understanding of the biochemical mechanics and developing better mathematical models.

In the first article Dr. Hugh E. Huxley reviews current studies of muscle systems which use X-ray diffraction and electron-microscopic analysis. Dr. Even Eisenberg describes how ATP hydrolysis drives muscle contraction via the action of myosin cross-bridges.

The next two papers contain mathematical studies of muscle contraction. Dr. Michael Propp uses a thermodynamic formalism to predict the physiological properties of muscle. Drs. H. Michael Lacker and Charles S. Peskin develop a mathematical method for working backwards to determine uniquely microscopic properties of the cross-bridges.

Drs. John W. Krueger and Katsuhiko Tsujioka use light diffraction observations to develop a quantitative understanding of cardiac function from properties of the myofibril and elements of the cross-bridge cycle. In the concluding paper, Dr. Robert S. Eisenberg reviews the current work on the electrical control mechanisms in excitation-contraction coupling which lead to muscle contraction.

Readership

Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.