Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Phantom Homology
 
Phantom Homology
eBook ISBN:  978-1-4704-0067-5
Product Code:  MEMO/103/490.E
List Price: $36.00
MAA Member Price: $32.40
AMS Member Price: $21.60
Phantom Homology
Click above image for expanded view
Phantom Homology
eBook ISBN:  978-1-4704-0067-5
Product Code:  MEMO/103/490.E
List Price: $36.00
MAA Member Price: $32.40
AMS Member Price: $21.60
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 1031993; 91 pp
    MSC: Primary 13

    This book uses a powerful new technique, tight closure, to provide insight into many different problems that were previously not recognized as related. The authors develop the notion of weakly Cohen-Macaulay rings or modules and prove some very general acyclicity theorems. These theorems are applied to the new theory of phantom homology, which uses tight closure techniques to show that certain elements in the homology of complexes must vanish when mapped to well-behaved rings. These ideas are used to strengthen various local homological conjectures. Initially, the authors develop the theory in positive characteristic, but it can be extended to characteristic 0 by the method of reduction to characteristic \(p\). The book would be suitable for use in an advanced graduate course in commutative algebra.

    Readership

    Algebraists and algebraic geometers interested in a deeper understanding of commutative algebra.

  • Table of Contents
     
     
    • Chapters
    • 1. Introduction
    • 2. Minheight and the weak Cohen-Macaulay property
    • 3. Acyclicity criteria with denominators for complexes of modules
    • 4. Vanishing theorems for maps of homology via phantom acyclicity
    • 5. Regular closure
    • 6. Intersection theorems via phantom acyclicity
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 1031993; 91 pp
MSC: Primary 13

This book uses a powerful new technique, tight closure, to provide insight into many different problems that were previously not recognized as related. The authors develop the notion of weakly Cohen-Macaulay rings or modules and prove some very general acyclicity theorems. These theorems are applied to the new theory of phantom homology, which uses tight closure techniques to show that certain elements in the homology of complexes must vanish when mapped to well-behaved rings. These ideas are used to strengthen various local homological conjectures. Initially, the authors develop the theory in positive characteristic, but it can be extended to characteristic 0 by the method of reduction to characteristic \(p\). The book would be suitable for use in an advanced graduate course in commutative algebra.

Readership

Algebraists and algebraic geometers interested in a deeper understanding of commutative algebra.

  • Chapters
  • 1. Introduction
  • 2. Minheight and the weak Cohen-Macaulay property
  • 3. Acyclicity criteria with denominators for complexes of modules
  • 4. Vanishing theorems for maps of homology via phantom acyclicity
  • 5. Regular closure
  • 6. Intersection theorems via phantom acyclicity
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.