Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Ondes de Gradients Multidimensionnelles
 
Ondes de Gradients Multidimensionnelles
eBook ISBN:  978-1-4704-0088-0
Product Code:  MEMO/106/511.E
List Price: $36.00
MAA Member Price: $32.40
AMS Member Price: $21.60
Ondes de Gradients Multidimensionnelles
Click above image for expanded view
Ondes de Gradients Multidimensionnelles
eBook ISBN:  978-1-4704-0088-0
Product Code:  MEMO/106/511.E
List Price: $36.00
MAA Member Price: $32.40
AMS Member Price: $21.60
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 1061993; 93 pp
    MSC: Primary 35

    Recent techniques in partial differential equations have led to a solution to the general multidimensional Cauchy problem for nonlinear gradient waves. In a blown-up configuration, Sablé-Tougeron constructs a local solution for a quasilinear hyperbolic system with continuous Cauchy data, in which the first derivatives are discontinuous on a hypersurface. This strong singularity is not so problematic as a rarefaction: The use of Alinhac's para-unknown leads to a tame inequality without loss of derivatives for the iterative scheme.

    Readership

    Advanced graduate students studying partial differential equations. Researchers in nonlinear hyperbolic problems.

  • Table of Contents
     
     
    • Chapters
    • 1. Formulation du problème, énoncé du résultat
    • 2. L’inégalité $L^2$
    • 3. Espaces et calcul paradifférentiel adaptés
    • 4. L’inégalité tame: première étape, paralinéarisation
    • 5. L’inégalité tame, $2^{\text {\`eme}}$ étape: inégalités conormales du modèle paradifférentiel
    • 6. L’inégalité tame fermée
    • 7. Les estimations $L^\infty $
    • 8. Les équations eiconales
    • 9. Le problème non linéaire
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 1061993; 93 pp
MSC: Primary 35

Recent techniques in partial differential equations have led to a solution to the general multidimensional Cauchy problem for nonlinear gradient waves. In a blown-up configuration, Sablé-Tougeron constructs a local solution for a quasilinear hyperbolic system with continuous Cauchy data, in which the first derivatives are discontinuous on a hypersurface. This strong singularity is not so problematic as a rarefaction: The use of Alinhac's para-unknown leads to a tame inequality without loss of derivatives for the iterative scheme.

Readership

Advanced graduate students studying partial differential equations. Researchers in nonlinear hyperbolic problems.

  • Chapters
  • 1. Formulation du problème, énoncé du résultat
  • 2. L’inégalité $L^2$
  • 3. Espaces et calcul paradifférentiel adaptés
  • 4. L’inégalité tame: première étape, paralinéarisation
  • 5. L’inégalité tame, $2^{\text {\`eme}}$ étape: inégalités conormales du modèle paradifférentiel
  • 6. L’inégalité tame fermée
  • 7. Les estimations $L^\infty $
  • 8. Les équations eiconales
  • 9. Le problème non linéaire
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.