eBook ISBN: | 978-1-4704-0088-0 |
Product Code: | MEMO/106/511.E |
List Price: | $36.00 |
MAA Member Price: | $32.40 |
AMS Member Price: | $21.60 |
eBook ISBN: | 978-1-4704-0088-0 |
Product Code: | MEMO/106/511.E |
List Price: | $36.00 |
MAA Member Price: | $32.40 |
AMS Member Price: | $21.60 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 106; 1993; 93 ppMSC: Primary 35
Recent techniques in partial differential equations have led to a solution to the general multidimensional Cauchy problem for nonlinear gradient waves. In a blown-up configuration, Sablé-Tougeron constructs a local solution for a quasilinear hyperbolic system with continuous Cauchy data, in which the first derivatives are discontinuous on a hypersurface. This strong singularity is not so problematic as a rarefaction: The use of Alinhac's para-unknown leads to a tame inequality without loss of derivatives for the iterative scheme.
ReadershipAdvanced graduate students studying partial differential equations. Researchers in nonlinear hyperbolic problems.
-
Table of Contents
-
Chapters
-
1. Formulation du problème, énoncé du résultat
-
2. L’inégalité $L^2$
-
3. Espaces et calcul paradifférentiel adaptés
-
4. L’inégalité tame: première étape, paralinéarisation
-
5. L’inégalité tame, $2^{\text {\`eme}}$ étape: inégalités conormales du modèle paradifférentiel
-
6. L’inégalité tame fermée
-
7. Les estimations $L^\infty $
-
8. Les équations eiconales
-
9. Le problème non linéaire
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
Recent techniques in partial differential equations have led to a solution to the general multidimensional Cauchy problem for nonlinear gradient waves. In a blown-up configuration, Sablé-Tougeron constructs a local solution for a quasilinear hyperbolic system with continuous Cauchy data, in which the first derivatives are discontinuous on a hypersurface. This strong singularity is not so problematic as a rarefaction: The use of Alinhac's para-unknown leads to a tame inequality without loss of derivatives for the iterative scheme.
Advanced graduate students studying partial differential equations. Researchers in nonlinear hyperbolic problems.
-
Chapters
-
1. Formulation du problème, énoncé du résultat
-
2. L’inégalité $L^2$
-
3. Espaces et calcul paradifférentiel adaptés
-
4. L’inégalité tame: première étape, paralinéarisation
-
5. L’inégalité tame, $2^{\text {\`eme}}$ étape: inégalités conormales du modèle paradifférentiel
-
6. L’inégalité tame fermée
-
7. Les estimations $L^\infty $
-
8. Les équations eiconales
-
9. Le problème non linéaire