eBook ISBN: | 978-1-4704-0129-0 |
Product Code: | MEMO/115/550.E |
List Price: | $41.00 |
MAA Member Price: | $36.90 |
AMS Member Price: | $24.60 |
eBook ISBN: | 978-1-4704-0129-0 |
Product Code: | MEMO/115/550.E |
List Price: | $41.00 |
MAA Member Price: | $36.90 |
AMS Member Price: | $24.60 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 115; 1995; 89 ppMSC: Primary 46
This work shows that the Weyl-von Neumann theorem for unitaries holds for \(\sigma\)-unital \(AF\)-algebras and their multiplier algebras. Lin studies \(E(X,A)\), the quotient of \(\mathrm{{\mathbf{Ext}}}^{eu}_s(C(X),A)\) by a special class of trivial extension, dubbed totally trivial extensions. This leads to a BDF-type classification for extensions of \(C(X)\) by a \(\sigma\)-unital purely infinite simple \(C^*\)-algebra with trivial \(K_1\)-group. Lin also shows that, when \(X\) is a compact subset of the plane, every extension of \(C(X)\) by a finite matroid \(C^*\)-algebra is totally trivial. Classification of these extensions for nice spaces is given, as are some other versions of the Weyl-von Neumann-Berg theorem.
ReadershipResearch mathematicians.
-
Table of Contents
-
Chapters
-
Introduction
-
I. Totally trivial extensions
-
II. The functor $E(\cdot , A)$
-
III. BDF theory for $C^*$-algebras with real rank zero
-
IV. Extensions by finite matroid algebras
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
This work shows that the Weyl-von Neumann theorem for unitaries holds for \(\sigma\)-unital \(AF\)-algebras and their multiplier algebras. Lin studies \(E(X,A)\), the quotient of \(\mathrm{{\mathbf{Ext}}}^{eu}_s(C(X),A)\) by a special class of trivial extension, dubbed totally trivial extensions. This leads to a BDF-type classification for extensions of \(C(X)\) by a \(\sigma\)-unital purely infinite simple \(C^*\)-algebra with trivial \(K_1\)-group. Lin also shows that, when \(X\) is a compact subset of the plane, every extension of \(C(X)\) by a finite matroid \(C^*\)-algebra is totally trivial. Classification of these extensions for nice spaces is given, as are some other versions of the Weyl-von Neumann-Berg theorem.
Research mathematicians.
-
Chapters
-
Introduction
-
I. Totally trivial extensions
-
II. The functor $E(\cdot , A)$
-
III. BDF theory for $C^*$-algebras with real rank zero
-
IV. Extensions by finite matroid algebras