eBook ISBN: | 978-1-4704-0236-5 |
Product Code: | MEMO/136/647.E |
List Price: | $48.00 |
MAA Member Price: | $43.20 |
AMS Member Price: | $28.80 |
eBook ISBN: | 978-1-4704-0236-5 |
Product Code: | MEMO/136/647.E |
List Price: | $48.00 |
MAA Member Price: | $43.20 |
AMS Member Price: | $28.80 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 136; 1998; 93 ppMSC: Primary 34; 35; 54
This volume is devoted to the study of almost automorphic dynamics in differential equations. By making use of techniques from abstract topological dynamics, it is shown that almost automorphy, a notion which was introduced by S. Bochner in 1955, is essential and fundamental in the qualitative study of almost periodic differential equations.
Fundamental notions from topological dynamics are introduced in the first part of the book. Harmonic properties of almost automorphic functions such as Fourier series and frequency module are studied. A module containment result is provided.
In the second part, lifting dynamics of \(\omega\)-limit sets and minimal sets of a skew-product semiflow from an almost periodic minimal base flow are studied. Skew-product semiflows with (strongly) order preserving or monotone natures on fibers are given particular attention. It is proved that a linearly stable minimal set must be almost automorphic and become almost periodic if it is also uniformly stable. Other issues such as flow extensions and the existence of almost periodic global attractors, etc., are also studied.
The third part of the book deals with dynamics of almost periodic differential equations. In this part, the general theory developed in the previous two parts is applied to study almost automorphic and almost periodic dynamics which are lifted from certain coefficient structures (e.g., almost automorphic or almost periodic) of differential equations. It is shown that (harmonic or subharmonic) almost automorphic solutions exist for a large class of almost periodic ordinary, parabolic and delay differential equations.
ReadershipGraduate students and research mathematicians working in dynamical systems and differential equations.
-
Table of Contents
-
Chapters
-
I. Almost automorphy and almost periodicity
-
II. Skew-product semiflows
-
III. Applications to differential equations
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
This volume is devoted to the study of almost automorphic dynamics in differential equations. By making use of techniques from abstract topological dynamics, it is shown that almost automorphy, a notion which was introduced by S. Bochner in 1955, is essential and fundamental in the qualitative study of almost periodic differential equations.
Fundamental notions from topological dynamics are introduced in the first part of the book. Harmonic properties of almost automorphic functions such as Fourier series and frequency module are studied. A module containment result is provided.
In the second part, lifting dynamics of \(\omega\)-limit sets and minimal sets of a skew-product semiflow from an almost periodic minimal base flow are studied. Skew-product semiflows with (strongly) order preserving or monotone natures on fibers are given particular attention. It is proved that a linearly stable minimal set must be almost automorphic and become almost periodic if it is also uniformly stable. Other issues such as flow extensions and the existence of almost periodic global attractors, etc., are also studied.
The third part of the book deals with dynamics of almost periodic differential equations. In this part, the general theory developed in the previous two parts is applied to study almost automorphic and almost periodic dynamics which are lifted from certain coefficient structures (e.g., almost automorphic or almost periodic) of differential equations. It is shown that (harmonic or subharmonic) almost automorphic solutions exist for a large class of almost periodic ordinary, parabolic and delay differential equations.
Graduate students and research mathematicians working in dynamical systems and differential equations.
-
Chapters
-
I. Almost automorphy and almost periodicity
-
II. Skew-product semiflows
-
III. Applications to differential equations