eBook ISBN: | 978-1-4704-0273-0 |
Product Code: | MEMO/143/682.E |
List Price: | $57.00 |
MAA Member Price: | $51.30 |
AMS Member Price: | $34.20 |
eBook ISBN: | 978-1-4704-0273-0 |
Product Code: | MEMO/143/682.E |
List Price: | $57.00 |
MAA Member Price: | $51.30 |
AMS Member Price: | $34.20 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 143; 2000; 149 ppMSC: Primary 55; Secondary 57; 17; 20; 18
Abstract. The main goal of this paper is to prove the following conjecture of Baues and Lemaire: the differential graded Lie algebra associated with the Sullivan model of a space is homotopy equivalent to its Quillen model. In addition we show the same for the cellular Lie algebra model which we build from the simplicial analog of the classical Adams - Hilton model. It turns out that this cellular Lie algebra model is one link in a chain of models connecting the models of Quillen and Sullivan. The key result which makes all this possible is Anick's correspondence between differential graded Lie algebras and Hopf algebras up to homotopy. In addition we show that the Quillen model is a rational homotopical equivalence, and we conclude the same for the other models using our main result. The construction of the three models is given in detail. The background from homotopy theory, differential algebra, and algebra is presented in great generality.
ReadershipGraduate students and research mathematicians interested in algebraic topology.
-
Table of Contents
-
Chapters
-
1. Homotopy theory
-
2. Differential algebra
-
3. Complete algebra
-
4. Three models for spaces
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
Abstract. The main goal of this paper is to prove the following conjecture of Baues and Lemaire: the differential graded Lie algebra associated with the Sullivan model of a space is homotopy equivalent to its Quillen model. In addition we show the same for the cellular Lie algebra model which we build from the simplicial analog of the classical Adams - Hilton model. It turns out that this cellular Lie algebra model is one link in a chain of models connecting the models of Quillen and Sullivan. The key result which makes all this possible is Anick's correspondence between differential graded Lie algebras and Hopf algebras up to homotopy. In addition we show that the Quillen model is a rational homotopical equivalence, and we conclude the same for the other models using our main result. The construction of the three models is given in detail. The background from homotopy theory, differential algebra, and algebra is presented in great generality.
Graduate students and research mathematicians interested in algebraic topology.
-
Chapters
-
1. Homotopy theory
-
2. Differential algebra
-
3. Complete algebra
-
4. Three models for spaces