
eBook ISBN: | 978-1-4704-0343-0 |
Product Code: | MEMO/158/750.E |
List Price: | $71.00 |
MAA Member Price: | $63.90 |
AMS Member Price: | $42.60 |

eBook ISBN: | 978-1-4704-0343-0 |
Product Code: | MEMO/158/750.E |
List Price: | $71.00 |
MAA Member Price: | $63.90 |
AMS Member Price: | $42.60 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 158; 2002; 198 ppMSC: Primary 46; Secondary 16
We deal with a map \(\alpha\) from a finite group \(G\) into the automorphism group \(Aut({\mathcal L})\) of a factor \({\mathcal L}\) satisfying (i) \(G=N \rtimes H\) is a semi-direct product, (ii) the induced map \(g \in G \to [\alpha_g] \in Out({\mathcal L})=Aut({\mathcal L})/Int({\mathcal L})\) is an injective homomorphism, and (iii) the restrictions \(\alpha \! \! \mid_N, \alpha \! \! \mid_H\) are genuine actions of the subgroups on the factor \({\mathcal L}\). The pair \({\mathcal M}={\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal N}={\mathcal L}^{\alpha\mid_N}\) (of the crossed product \({\mathcal L} \rtimes_{\alpha} H\) and the fixed-point algebra \({\mathcal L}^{\alpha\mid_N}\)) gives us an irreducible inclusion of factors with Jones index \(\# G\). The inclusion \({\mathcal M} \supseteq {\mathcal N}\) is of depth \(2\) and hence known to correspond to a Kac algebra of dimension \(\# G\).
A Kac algebra arising in this way is investigated in detail, and in fact the relevant multiplicative unitary (satisfying the pentagon equation) is described. We introduce and analyze a certain cohomology group (denoted by \(H^2((N,H),{\mathbf T})\)) providing complete information on the Kac algebra structure, and we construct an abundance of non-trivial examples by making use of various cocycles. The operator algebraic meaning of this cohomology group is clarified, and some related topics are also discussed.
Sector technique enables us to establish structure results for Kac algebras with certain prescribed underlying algebra structure. They guarantee that “most” Kac algebras of low dimension (say less than \(60\)) actually arise from inclusions of the form \({\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal L}^{\alpha\mid_N}\), and consequently their classification can be carried out by determining \(H^2((N,H),{\mathbf T})\). Among other things we indeed classify Kac algebras of dimension \(16\) and \(24\), which (together with previously known results) gives rise to the complete classification of Kac algebras of dimension up to \(31\). Partly to simplify classification procedure and hopefully for its own sake, we also study “group extensions” of general (finite-dimensional) Kac algebras with some discussions on related topics.
ReadershipGraduate students and research mathematicians interested in functional analysis.
-
Table of Contents
-
Chapters
-
1. Introduction
-
2. Actions of matched pairs
-
3. Cocycles attached to the pentagon equation
-
4. Multiplicative unitary
-
5. Kac algebra structure
-
6. Group-like elements
-
7. Examples of finite-dimensional Kac algebras
-
8. Inclusions with the Coxeter-Dynkin graph $D^{(1)}_6$ and the Kac-Paljutkin algebra
-
9. Structure theorems
-
10. Classification of certain Kac algebras
-
11. Classification of Kac algebras of dimension 16
-
12. Group extensions of general Kac algebras
-
13. 2-cocycles of Kac algebras
-
14. Classification of Kac algebras of dimension 24
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
We deal with a map \(\alpha\) from a finite group \(G\) into the automorphism group \(Aut({\mathcal L})\) of a factor \({\mathcal L}\) satisfying (i) \(G=N \rtimes H\) is a semi-direct product, (ii) the induced map \(g \in G \to [\alpha_g] \in Out({\mathcal L})=Aut({\mathcal L})/Int({\mathcal L})\) is an injective homomorphism, and (iii) the restrictions \(\alpha \! \! \mid_N, \alpha \! \! \mid_H\) are genuine actions of the subgroups on the factor \({\mathcal L}\). The pair \({\mathcal M}={\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal N}={\mathcal L}^{\alpha\mid_N}\) (of the crossed product \({\mathcal L} \rtimes_{\alpha} H\) and the fixed-point algebra \({\mathcal L}^{\alpha\mid_N}\)) gives us an irreducible inclusion of factors with Jones index \(\# G\). The inclusion \({\mathcal M} \supseteq {\mathcal N}\) is of depth \(2\) and hence known to correspond to a Kac algebra of dimension \(\# G\).
A Kac algebra arising in this way is investigated in detail, and in fact the relevant multiplicative unitary (satisfying the pentagon equation) is described. We introduce and analyze a certain cohomology group (denoted by \(H^2((N,H),{\mathbf T})\)) providing complete information on the Kac algebra structure, and we construct an abundance of non-trivial examples by making use of various cocycles. The operator algebraic meaning of this cohomology group is clarified, and some related topics are also discussed.
Sector technique enables us to establish structure results for Kac algebras with certain prescribed underlying algebra structure. They guarantee that “most” Kac algebras of low dimension (say less than \(60\)) actually arise from inclusions of the form \({\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal L}^{\alpha\mid_N}\), and consequently their classification can be carried out by determining \(H^2((N,H),{\mathbf T})\). Among other things we indeed classify Kac algebras of dimension \(16\) and \(24\), which (together with previously known results) gives rise to the complete classification of Kac algebras of dimension up to \(31\). Partly to simplify classification procedure and hopefully for its own sake, we also study “group extensions” of general (finite-dimensional) Kac algebras with some discussions on related topics.
Graduate students and research mathematicians interested in functional analysis.
-
Chapters
-
1. Introduction
-
2. Actions of matched pairs
-
3. Cocycles attached to the pentagon equation
-
4. Multiplicative unitary
-
5. Kac algebra structure
-
6. Group-like elements
-
7. Examples of finite-dimensional Kac algebras
-
8. Inclusions with the Coxeter-Dynkin graph $D^{(1)}_6$ and the Kac-Paljutkin algebra
-
9. Structure theorems
-
10. Classification of certain Kac algebras
-
11. Classification of Kac algebras of dimension 16
-
12. Group extensions of general Kac algebras
-
13. 2-cocycles of Kac algebras
-
14. Classification of Kac algebras of dimension 24