eBook ISBN: | 978-1-4704-0463-5 |
Product Code: | MEMO/182/859.E |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $41.40 |
eBook ISBN: | 978-1-4704-0463-5 |
Product Code: | MEMO/182/859.E |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $41.40 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 182; 2006; 163 ppMSC: Primary 46; Secondary 30; 32
We characterize Carleson measures for the analytic Besov spaces \(B_{p}\) on the unit ball \(\mathbb{B}_{n}\) in \(\mathbb{C}^{n}\) in terms of a discrete tree condition on the associated Bergman tree \(\mathcal{T}_{n}\). We also characterize the pointwise multipliers on \(B_{p}\) in terms of Carleson measures. We then apply these results to characterize the interpolating sequences in \(\mathbb{B}_{n}\) for \(B_{p}\) and their multiplier spaces \(M_{B_{p}}\), generalizing a theorem of Böe in one dimension. The interpolating sequences for \(B_{p}\) and for \(M_{B_{p}}\) are precisely those sequences satisfying a separation condition and a Carleson embedding condition. These results hold for \(1 < p < \infty\) with the exceptions that for \(2+\frac{1}{n-1}\leq p < \infty\), the necessity of the tree condition for the Carleson embedding is left open, and for \(2+\frac{1}{n-1}\leq p\leq2n\), the sufficiency of the separation condition and the Carleson embedding for multiplier interpolation is left open; the separation and tree conditions are however sufficient for multiplier interpolation. Novel features of our proof of the interpolation theorem for \(M_{B_{p}}\) include the crucial use of the discrete tree condition for sufficiency, and a new notion of holomorphic Besov space on a Bergman tree, one suited to modeling spaces of holomorphic functions defined by the size of higher order derivatives, for necessity.
Readership -
Table of Contents
-
Chapters
-
1. Introduction
-
2. A tree structure for the unit ball $\mathbb {B}_n$ in $\mathbb {C}^n$
-
3. Carleson measures
-
4. Pointwise multipliers
-
5. Interpolating sequences
-
6. An almost invariant holomorphic derivative
-
7. Besov spaces on trees
-
8. Holomorphic Besov spaces on Bergman trees
-
9. Completing the multiplier interpolation loop
-
10. Appendix
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
We characterize Carleson measures for the analytic Besov spaces \(B_{p}\) on the unit ball \(\mathbb{B}_{n}\) in \(\mathbb{C}^{n}\) in terms of a discrete tree condition on the associated Bergman tree \(\mathcal{T}_{n}\). We also characterize the pointwise multipliers on \(B_{p}\) in terms of Carleson measures. We then apply these results to characterize the interpolating sequences in \(\mathbb{B}_{n}\) for \(B_{p}\) and their multiplier spaces \(M_{B_{p}}\), generalizing a theorem of Böe in one dimension. The interpolating sequences for \(B_{p}\) and for \(M_{B_{p}}\) are precisely those sequences satisfying a separation condition and a Carleson embedding condition. These results hold for \(1 < p < \infty\) with the exceptions that for \(2+\frac{1}{n-1}\leq p < \infty\), the necessity of the tree condition for the Carleson embedding is left open, and for \(2+\frac{1}{n-1}\leq p\leq2n\), the sufficiency of the separation condition and the Carleson embedding for multiplier interpolation is left open; the separation and tree conditions are however sufficient for multiplier interpolation. Novel features of our proof of the interpolation theorem for \(M_{B_{p}}\) include the crucial use of the discrete tree condition for sufficiency, and a new notion of holomorphic Besov space on a Bergman tree, one suited to modeling spaces of holomorphic functions defined by the size of higher order derivatives, for necessity.
-
Chapters
-
1. Introduction
-
2. A tree structure for the unit ball $\mathbb {B}_n$ in $\mathbb {C}^n$
-
3. Carleson measures
-
4. Pointwise multipliers
-
5. Interpolating sequences
-
6. An almost invariant holomorphic derivative
-
7. Besov spaces on trees
-
8. Holomorphic Besov spaces on Bergman trees
-
9. Completing the multiplier interpolation loop
-
10. Appendix