Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles
 
O. García-Prada Consejo Superior de Investigaciones Científicas, Madrid, Spain
P. B. Gothen Universidade do Porto, Porto, Portugal
V. Muñoz Consejo Superior de Investigaciones Científicas, Madrid, Spain
Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles
eBook ISBN:  978-1-4704-0483-3
Product Code:  MEMO/187/879.E
List Price: $62.00
MAA Member Price: $55.80
AMS Member Price: $37.20
Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles
Click above image for expanded view
Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles
O. García-Prada Consejo Superior de Investigaciones Científicas, Madrid, Spain
P. B. Gothen Universidade do Porto, Porto, Portugal
V. Muñoz Consejo Superior de Investigaciones Científicas, Madrid, Spain
eBook ISBN:  978-1-4704-0483-3
Product Code:  MEMO/187/879.E
List Price: $62.00
MAA Member Price: $55.80
AMS Member Price: $37.20
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 1872007; 80 pp
    MSC: Primary 14

    Parabolic Higgs bundles on a Riemann surface are of interest for many reasons, one of them being their importance in the study of representations of the fundamental group of the punctured surface in the complex general linear group. In this paper the authors calculate the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles with fixed and non-fixed determinant, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and the authors carry out a careful analysis of them by studying their variation with this parameter. Thus the authors obtain in particular information about the topology of the moduli spaces of parabolic triples for the value of the parameter relevant to the study of parabolic Higgs bundles. The remaining critical submanifolds are also described: one of them is the moduli space of parabolic bundles, while the remaining ones have a description in terms of symmetric products of the Riemann surface. As another consequence of their Morse theoretic analysis, the authors obtain a proof of the parabolic version of a theorem of Laumon, which states that the nilpotent cone (the preimage of zero under the Hitchin map) is a Lagrangian subvariety of the moduli space of parabolic Higgs bundles.

  • Table of Contents
     
     
    • Chapters
    • 1. Introduction
    • 2. Parabolic Higgs bundles
    • 3. Morse theory on the moduli space
    • 4. Parabolic triples
    • 5. Critical values and flips
    • 6. Parabolic triples with $r_1 = 2$ and $r_2 = 1$
    • 7. Critical submanifolds of type (1,1,1)
    • 8. Critical submanifolds of type (1,2)
    • 9. Critical submanifolds of type (2,1)
    • 10. Betti numbers of the moduli space of rank three parabolic bundles
    • 11. Betti numbers of the moduli space of rank three parabolic Higgs bundles
    • 12. The fixed determinant case
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 1872007; 80 pp
MSC: Primary 14

Parabolic Higgs bundles on a Riemann surface are of interest for many reasons, one of them being their importance in the study of representations of the fundamental group of the punctured surface in the complex general linear group. In this paper the authors calculate the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles with fixed and non-fixed determinant, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and the authors carry out a careful analysis of them by studying their variation with this parameter. Thus the authors obtain in particular information about the topology of the moduli spaces of parabolic triples for the value of the parameter relevant to the study of parabolic Higgs bundles. The remaining critical submanifolds are also described: one of them is the moduli space of parabolic bundles, while the remaining ones have a description in terms of symmetric products of the Riemann surface. As another consequence of their Morse theoretic analysis, the authors obtain a proof of the parabolic version of a theorem of Laumon, which states that the nilpotent cone (the preimage of zero under the Hitchin map) is a Lagrangian subvariety of the moduli space of parabolic Higgs bundles.

  • Chapters
  • 1. Introduction
  • 2. Parabolic Higgs bundles
  • 3. Morse theory on the moduli space
  • 4. Parabolic triples
  • 5. Critical values and flips
  • 6. Parabolic triples with $r_1 = 2$ and $r_2 = 1$
  • 7. Critical submanifolds of type (1,1,1)
  • 8. Critical submanifolds of type (1,2)
  • 9. Critical submanifolds of type (2,1)
  • 10. Betti numbers of the moduli space of rank three parabolic bundles
  • 11. Betti numbers of the moduli space of rank three parabolic Higgs bundles
  • 12. The fixed determinant case
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.