eBook ISBN: | 978-1-4704-0507-6 |
Product Code: | MEMO/193/901.E |
List Price: | $68.00 |
MAA Member Price: | $61.20 |
AMS Member Price: | $40.80 |
eBook ISBN: | 978-1-4704-0507-6 |
Product Code: | MEMO/193/901.E |
List Price: | $68.00 |
MAA Member Price: | $61.20 |
AMS Member Price: | $40.80 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 193; 2008; 90 ppMSC: Primary 14
Let \(X\) be a smooth elliptic fibration over a smooth base \(B\). Under mild assumptions, the authors establish a Fourier-Mukai equivalence between the derived categories of two objects, each of which is an \(\mathcal{O}^{\times}\) gerbe over a genus one fibration which is a twisted form of \(X\). The roles of the gerbe and the twist are interchanged by the authors' duality. The authors state a general conjecture extending this to allow singular fibers, and they prove the conjecture when \(X\) is a surface. The duality extends to an action of the full modular group. This duality is related to the Strominger-Yau-Zaslow version of mirror symmetry, to twisted sheaves, and to non-commutative geometry.
-
Table of Contents
-
Chapters
-
1. Introduction
-
2. The Brauer group and the Tate-Shafarevich group
-
3. Smooth genus one fibrations
-
4. Surfaces
-
5. Modified $T$-duality and the SYZ conjecture
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
Let \(X\) be a smooth elliptic fibration over a smooth base \(B\). Under mild assumptions, the authors establish a Fourier-Mukai equivalence between the derived categories of two objects, each of which is an \(\mathcal{O}^{\times}\) gerbe over a genus one fibration which is a twisted form of \(X\). The roles of the gerbe and the twist are interchanged by the authors' duality. The authors state a general conjecture extending this to allow singular fibers, and they prove the conjecture when \(X\) is a surface. The duality extends to an action of the full modular group. This duality is related to the Strominger-Yau-Zaslow version of mirror symmetry, to twisted sheaves, and to non-commutative geometry.
-
Chapters
-
1. Introduction
-
2. The Brauer group and the Tate-Shafarevich group
-
3. Smooth genus one fibrations
-
4. Surfaces
-
5. Modified $T$-duality and the SYZ conjecture