eBook ISBN: | 978-1-4704-0534-2 |
Product Code: | MEMO/198/928.E |
List Price: | $71.00 |
MAA Member Price: | $63.90 |
AMS Member Price: | $42.60 |
eBook ISBN: | 978-1-4704-0534-2 |
Product Code: | MEMO/198/928.E |
List Price: | $71.00 |
MAA Member Price: | $63.90 |
AMS Member Price: | $42.60 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 198; 2009; 120 ppMSC: Primary 58; 55
This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary codimension. In particular the author develops a precise theory of boundary reductions.
The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.
-
Table of Contents
-
Chapters
-
Chapter 1
-
Chapter 2. Index theory for families with corners
-
Chapter 3. Analytic obstruction theory
-
Chapter 4. Deligne cohomology valued index theory
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary codimension. In particular the author develops a precise theory of boundary reductions.
The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.
-
Chapters
-
Chapter 1
-
Chapter 2. Index theory for families with corners
-
Chapter 3. Analytic obstruction theory
-
Chapter 4. Deligne cohomology valued index theory