Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
The Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions
 
Mihai Ciucu Indiana University, Bloomington, IN
The Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions
eBook ISBN:  978-1-4704-0541-0
Product Code:  MEMO/199/935.E
List Price: $70.00
MAA Member Price: $63.00
AMS Member Price: $42.00
The Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions
Click above image for expanded view
The Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions
Mihai Ciucu Indiana University, Bloomington, IN
eBook ISBN:  978-1-4704-0541-0
Product Code:  MEMO/199/935.E
List Price: $70.00
MAA Member Price: $63.00
AMS Member Price: $42.00
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 1992009; 100 pp
    MSC: Primary 82; Secondary 05; 41; 60

    The author defines the correlation of holes on the triangular lattice under periodic boundary conditions and studies its asymptotics as the distances between the holes grow to infinity. He proves that the joint correlation of an arbitrary collection of triangular holes of even side-lengths (in lattice spacing units) satisfies, for large separations between the holes, a Coulomb law and a superposition principle that perfectly parallel the laws of two dimensional electrostatics, with physical charges corresponding to holes, and their magnitude to the difference between the number of right-pointing and left-pointing unit triangles in each hole.

    The author details this parallel by indicating that, as a consequence of the results, the relative probabilities of finding a fixed collection of holes at given mutual distances (when sampling uniformly at random over all unit rhombus tilings of the complement of the holes) approach, for large separations between the holes, the relative probabilities of finding the corresponding two dimensional physical system of charges at given mutual distances. Physical temperature corresponds to a parameter refining the background triangular lattice.

    He also gives an equivalent phrasing of the results in terms of covering surfaces of given holonomy. From this perspective, two dimensional electrostatic potential energy arises by averaging over all possible discrete geometries of the covering surfaces.

  • Table of Contents
     
     
    • Chapters
    • Introduction
    • Chapter 1. Definition of $\hat {\omega }$ and statement of main result
    • Chapter 2. Deducing Theorem 1.2 from Theorem 2.1 and Proposition 2.2
    • Chapter 3. A determinant formula for $\hat {\omega }$
    • Chapter 4. An exact formula for $U_s(a, b)$
    • Chapter 5. Asymptotic singularity and Newton’s divided difference operator
    • Chapter 6. The asymptotics of the entries in the $U$-part of $M’$
    • Chapter 7. The asymptotics of the entries in the $P$-part of $M’$
    • Chapter 8. The evaluation of $\det (M”)$
    • Chapter 9. Divisibility of $\det (M”)$ by the powers of $q - \zeta $ and $q - \zeta ^{-1}$
    • Chapter 10. The case $q = 0$ of Theorem 8.1, up to a constant multiple
    • Chapter 11. Divisibility of $\det (dM_0)$ by the powers of $(x_i - x_j) - \zeta ^{\pm 1}(y_i - y_j) - ah$
    • Chapter 12. Divisibility of $\det (dM_0)$ by the powers of $(x_i - z_j) - \zeta ^{\pm 1}(y_i - \hat {\omega }_j)$
    • Chapter 13. The proofs of Theorem 2.1 and Proposition 2.2
    • Chapter 14. The case of arbitrary slopes
    • Chapter 15. Random covering surfaces and physical interpretation
    • Appendix. A determinant evaluation
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 1992009; 100 pp
MSC: Primary 82; Secondary 05; 41; 60

The author defines the correlation of holes on the triangular lattice under periodic boundary conditions and studies its asymptotics as the distances between the holes grow to infinity. He proves that the joint correlation of an arbitrary collection of triangular holes of even side-lengths (in lattice spacing units) satisfies, for large separations between the holes, a Coulomb law and a superposition principle that perfectly parallel the laws of two dimensional electrostatics, with physical charges corresponding to holes, and their magnitude to the difference between the number of right-pointing and left-pointing unit triangles in each hole.

The author details this parallel by indicating that, as a consequence of the results, the relative probabilities of finding a fixed collection of holes at given mutual distances (when sampling uniformly at random over all unit rhombus tilings of the complement of the holes) approach, for large separations between the holes, the relative probabilities of finding the corresponding two dimensional physical system of charges at given mutual distances. Physical temperature corresponds to a parameter refining the background triangular lattice.

He also gives an equivalent phrasing of the results in terms of covering surfaces of given holonomy. From this perspective, two dimensional electrostatic potential energy arises by averaging over all possible discrete geometries of the covering surfaces.

  • Chapters
  • Introduction
  • Chapter 1. Definition of $\hat {\omega }$ and statement of main result
  • Chapter 2. Deducing Theorem 1.2 from Theorem 2.1 and Proposition 2.2
  • Chapter 3. A determinant formula for $\hat {\omega }$
  • Chapter 4. An exact formula for $U_s(a, b)$
  • Chapter 5. Asymptotic singularity and Newton’s divided difference operator
  • Chapter 6. The asymptotics of the entries in the $U$-part of $M’$
  • Chapter 7. The asymptotics of the entries in the $P$-part of $M’$
  • Chapter 8. The evaluation of $\det (M”)$
  • Chapter 9. Divisibility of $\det (M”)$ by the powers of $q - \zeta $ and $q - \zeta ^{-1}$
  • Chapter 10. The case $q = 0$ of Theorem 8.1, up to a constant multiple
  • Chapter 11. Divisibility of $\det (dM_0)$ by the powers of $(x_i - x_j) - \zeta ^{\pm 1}(y_i - y_j) - ah$
  • Chapter 12. Divisibility of $\det (dM_0)$ by the powers of $(x_i - z_j) - \zeta ^{\pm 1}(y_i - \hat {\omega }_j)$
  • Chapter 13. The proofs of Theorem 2.1 and Proposition 2.2
  • Chapter 14. The case of arbitrary slopes
  • Chapter 15. Random covering surfaces and physical interpretation
  • Appendix. A determinant evaluation
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.