eBook ISBN: | 978-0-8218-8514-7 |
Product Code: | MEMO/215/1011.E |
List Price: | $70.00 |
MAA Member Price: | $63.00 |
AMS Member Price: | $42.00 |
eBook ISBN: | 978-0-8218-8514-7 |
Product Code: | MEMO/215/1011.E |
List Price: | $70.00 |
MAA Member Price: | $63.00 |
AMS Member Price: | $42.00 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 215; 2011; 86 ppMSC: Primary 14; Secondary 82
In this article the author uses techniques from algebraic geometry and homological algebra, together with ideas from string theory to construct a class of 3-dimensional Calabi-Yau algebras. The Calabi-Yau property appears throughout geometry and string theory and is increasingly being studied in algebra. He further shows that the algebras constructed are examples of non-commutative crepant resolutions (NCCRs), in the sense of Van den Bergh, of Gorenstein affine toric threefolds.
Dimer models, first studied in theoretical physics, give a way of writing down a class of non-commutative algebras, as the path algebra of a quiver with relations obtained from a ‘superpotential’. Some examples are Calabi-Yau and some are not. The author considers two types of ‘consistency’ conditions on dimer models, and shows that a ‘geometrically consistent’ dimer model is ‘algebraically consistent’. He proves that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras. This is the key step which allows him to prove that these algebras are NCCRs of the Gorenstein affine toric threefolds associated to the dimer models.
-
Table of Contents
-
Chapters
-
Acknowledgements
-
1. Introduction
-
2. Introduction to the dimer model
-
3. Consistency
-
4. Zig-zag flows and perfect matchings
-
5. Toric algebras and algebraic consistency
-
6. Geometric consistency implies algebraic consistency
-
7. Calabi-Yau algebras from algebraically consistent dimers
-
8. Non-commutative crepant resolutions
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
In this article the author uses techniques from algebraic geometry and homological algebra, together with ideas from string theory to construct a class of 3-dimensional Calabi-Yau algebras. The Calabi-Yau property appears throughout geometry and string theory and is increasingly being studied in algebra. He further shows that the algebras constructed are examples of non-commutative crepant resolutions (NCCRs), in the sense of Van den Bergh, of Gorenstein affine toric threefolds.
Dimer models, first studied in theoretical physics, give a way of writing down a class of non-commutative algebras, as the path algebra of a quiver with relations obtained from a ‘superpotential’. Some examples are Calabi-Yau and some are not. The author considers two types of ‘consistency’ conditions on dimer models, and shows that a ‘geometrically consistent’ dimer model is ‘algebraically consistent’. He proves that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras. This is the key step which allows him to prove that these algebras are NCCRs of the Gorenstein affine toric threefolds associated to the dimer models.
-
Chapters
-
Acknowledgements
-
1. Introduction
-
2. Introduction to the dimer model
-
3. Consistency
-
4. Zig-zag flows and perfect matchings
-
5. Toric algebras and algebraic consistency
-
6. Geometric consistency implies algebraic consistency
-
7. Calabi-Yau algebras from algebraically consistent dimers
-
8. Non-commutative crepant resolutions