Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Chevalley Supergroups
 
R. Fioresi Università di Bologna, Bologna, Italy
F. Gavarini Università di Roma "Tor Vergata", Rome, Italy
Chevalley Supergroups
eBook ISBN:  978-0-8218-8521-5
Product Code:  MEMO/215/1014.E
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $36.00
Chevalley Supergroups
Click above image for expanded view
Chevalley Supergroups
R. Fioresi Università di Bologna, Bologna, Italy
F. Gavarini Università di Roma "Tor Vergata", Rome, Italy
eBook ISBN:  978-0-8218-8521-5
Product Code:  MEMO/215/1014.E
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $36.00
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 2152011; 64 pp
    MSC: Primary 14; Secondary 58; 17

    In the framework of algebraic supergeometry, the authors give a construction of the scheme-theoretic supergeometric analogue of split reductive algebraic group-schemes, namely affine algebraic supergroups associated to simple Lie superalgebras of classical type. In particular, all Lie superalgebras of both basic and strange types are considered. This provides a unified approach to most of the algebraic supergroups considered so far in the literature, and an effective method to construct new ones.

    The authors' method follows the pattern of a suitable scheme-theoretic revisitation of Chevalley's construction of semisimple algebraic groups, adapted to the reductive case. As an intermediate step, they prove an existence theorem for Chevalley bases of simple classical Lie superalgebras and a PBW-like theorem for their associated Kostant superalgebras.

  • Table of Contents
     
     
    • Chapters
    • 1. Introduction
    • 2. Preliminaries
    • 3. Chevalley bases and Chevalley algebras
    • 4. Kostant superalgebras
    • 5. Chevalley supergroups
    • 6. The cases $ A(1,1) \, $, $ P(3) $ and $ Q(n) $
    • A. Sheafification
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 2152011; 64 pp
MSC: Primary 14; Secondary 58; 17

In the framework of algebraic supergeometry, the authors give a construction of the scheme-theoretic supergeometric analogue of split reductive algebraic group-schemes, namely affine algebraic supergroups associated to simple Lie superalgebras of classical type. In particular, all Lie superalgebras of both basic and strange types are considered. This provides a unified approach to most of the algebraic supergroups considered so far in the literature, and an effective method to construct new ones.

The authors' method follows the pattern of a suitable scheme-theoretic revisitation of Chevalley's construction of semisimple algebraic groups, adapted to the reductive case. As an intermediate step, they prove an existence theorem for Chevalley bases of simple classical Lie superalgebras and a PBW-like theorem for their associated Kostant superalgebras.

  • Chapters
  • 1. Introduction
  • 2. Preliminaries
  • 3. Chevalley bases and Chevalley algebras
  • 4. Kostant superalgebras
  • 5. Chevalley supergroups
  • 6. The cases $ A(1,1) \, $, $ P(3) $ and $ Q(n) $
  • A. Sheafification
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.