eBook ISBN: | 978-0-8218-8525-3 |
Product Code: | MEMO/216/1016.E |
List Price: | $70.00 |
MAA Member Price: | $63.00 |
AMS Member Price: | $42.00 |
eBook ISBN: | 978-0-8218-8525-3 |
Product Code: | MEMO/216/1016.E |
List Price: | $70.00 |
MAA Member Price: | $63.00 |
AMS Member Price: | $42.00 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 216; 2012; 114 ppMSC: Primary 22; 11
The authors construct new families of smooth admissible \(\overline{\mathbb{F}}_p\)-representations of \(\mathrm{GL}_2(F)\), where \(F\) is a finite extension of \(\mathbb{Q}_p\). When \(F\) is unramified, these representations have the \(\mathrm{GL}_2({\mathcal O}_F)\)-socle predicted by the recent generalizations of Serre's modularity conjecture. The authors' motivation is a hypothetical mod \(p\) Langlands correspondence.
-
Table of Contents
-
Chapters
-
1. Introduction
-
2. Representation theory of $\Gamma $ over $\bar {\mathbb F}_p$ I
-
3. Representation theory of $\Gamma $ over $\bar {\mathbb F}_p$ II
-
4. Representation theory of $\Gamma $ over $\bar {\mathbb F}_p$ III
-
5. Results on $K$-extensions
-
6. Hecke algebra
-
7. Computation of $\mathbb {R}^1\mathcal {I}$ for principal series
-
8. Extensions of principal series
-
9. General theory of diagrams and representations of ${\mathrm {GL}}_2$
-
10. Examples of diagrams
-
11. Generic Diamond weights
-
12. The unicity Lemma
-
13. Generic Diamond diagrams
-
14. The representations $D_{0}(\rho )$ and $D_1(\rho )$
-
15. Decomposition of generic Diamond diagrams
-
16. Generic Diamond diagrams for $f\in \{1,2\}$
-
17. The representation $R(\sigma )$
-
18. The extension Lemma
-
19. Generic Diamond diagrams and representations of ${\mathrm {GL}}_2$
-
20. The case $F=\mathbb Q_{p}$
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
The authors construct new families of smooth admissible \(\overline{\mathbb{F}}_p\)-representations of \(\mathrm{GL}_2(F)\), where \(F\) is a finite extension of \(\mathbb{Q}_p\). When \(F\) is unramified, these representations have the \(\mathrm{GL}_2({\mathcal O}_F)\)-socle predicted by the recent generalizations of Serre's modularity conjecture. The authors' motivation is a hypothetical mod \(p\) Langlands correspondence.
-
Chapters
-
1. Introduction
-
2. Representation theory of $\Gamma $ over $\bar {\mathbb F}_p$ I
-
3. Representation theory of $\Gamma $ over $\bar {\mathbb F}_p$ II
-
4. Representation theory of $\Gamma $ over $\bar {\mathbb F}_p$ III
-
5. Results on $K$-extensions
-
6. Hecke algebra
-
7. Computation of $\mathbb {R}^1\mathcal {I}$ for principal series
-
8. Extensions of principal series
-
9. General theory of diagrams and representations of ${\mathrm {GL}}_2$
-
10. Examples of diagrams
-
11. Generic Diamond weights
-
12. The unicity Lemma
-
13. Generic Diamond diagrams
-
14. The representations $D_{0}(\rho )$ and $D_1(\rho )$
-
15. Decomposition of generic Diamond diagrams
-
16. Generic Diamond diagrams for $f\in \{1,2\}$
-
17. The representation $R(\sigma )$
-
18. The extension Lemma
-
19. Generic Diamond diagrams and representations of ${\mathrm {GL}}_2$
-
20. The case $F=\mathbb Q_{p}$