eBook ISBN: | 978-0-8218-9873-4 |
Product Code: | MEMO/223/1049.E |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $41.40 |
eBook ISBN: | 978-0-8218-9873-4 |
Product Code: | MEMO/223/1049.E |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $41.40 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 223; 2013; 88 ppMSC: Primary 20; 18
Let \(G=G(K)\) be a simple algebraic group defined over an algebraically closed field \(K\) of characteristic \(p\geq 0\). A subgroup \(X\) of \(G\) is said to be \(G\)-completely reducible if, whenever it is contained in a parabolic subgroup of \(G\), it is contained in a Levi subgroup of that parabolic. A subgroup \(X\) of \(G\) is said to be \(G\)-irreducible if \(X\) is in no proper parabolic subgroup of \(G\); and \(G\)-reducible if it is in some proper parabolic of \(G\). In this paper, the author considers the case that \(G=F_4(K)\).
The author finds all conjugacy classes of closed, connected, semisimple \(G\)-reducible subgroups \(X\) of \(G\). Thus he also finds all non-\(G\)-completely reducible closed, connected, semisimple subgroups of \(G\). When \(X\) is closed, connected and simple of rank at least two, he finds all conjugacy classes of \(G\)-irreducible subgroups \(X\) of \(G\). Together with the work of Amende classifying irreducible subgroups of type \(A_1\) this gives a complete classification of the simple subgroups of \(G\).
The author also uses this classification to find all subgroups of \(G=F_4\) which are generated by short root elements of \(G\), by utilising and extending the results of Liebeck and Seitz.
-
Table of Contents
-
Chapters
-
1. Introduction
-
2. Overview
-
3. General Theory
-
4. Reductive subgroups of $F_4$
-
5. Appendices
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
Let \(G=G(K)\) be a simple algebraic group defined over an algebraically closed field \(K\) of characteristic \(p\geq 0\). A subgroup \(X\) of \(G\) is said to be \(G\)-completely reducible if, whenever it is contained in a parabolic subgroup of \(G\), it is contained in a Levi subgroup of that parabolic. A subgroup \(X\) of \(G\) is said to be \(G\)-irreducible if \(X\) is in no proper parabolic subgroup of \(G\); and \(G\)-reducible if it is in some proper parabolic of \(G\). In this paper, the author considers the case that \(G=F_4(K)\).
The author finds all conjugacy classes of closed, connected, semisimple \(G\)-reducible subgroups \(X\) of \(G\). Thus he also finds all non-\(G\)-completely reducible closed, connected, semisimple subgroups of \(G\). When \(X\) is closed, connected and simple of rank at least two, he finds all conjugacy classes of \(G\)-irreducible subgroups \(X\) of \(G\). Together with the work of Amende classifying irreducible subgroups of type \(A_1\) this gives a complete classification of the simple subgroups of \(G\).
The author also uses this classification to find all subgroups of \(G=F_4\) which are generated by short root elements of \(G\), by utilising and extending the results of Liebeck and Seitz.
-
Chapters
-
1. Introduction
-
2. Overview
-
3. General Theory
-
4. Reductive subgroups of $F_4$
-
5. Appendices