eBook ISBN: | 978-1-4704-2278-3 |
Product Code: | MEMO/236/1112.E |
List Price: | $76.00 |
MAA Member Price: | $68.40 |
AMS Member Price: | $45.60 |
eBook ISBN: | 978-1-4704-2278-3 |
Product Code: | MEMO/236/1112.E |
List Price: | $76.00 |
MAA Member Price: | $68.40 |
AMS Member Price: | $45.60 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 236; 2015; 99 ppMSC: Primary 60; Secondary 65
Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time.
This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.
-
Table of Contents
-
Chapters
-
1. Introduction
-
2. Integrability properties of approximation processes for SDEs
-
3. Convergence properties of approximation processes for SDEs
-
4. Examples of SDEs
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time.
This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.
-
Chapters
-
1. Introduction
-
2. Integrability properties of approximation processes for SDEs
-
3. Convergence properties of approximation processes for SDEs
-
4. Examples of SDEs