Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Uniqueness of Exact Borel Subalgebras and Bocses
 
Julian Külshammer Uppsala University, Uppsala, Sweden
Vanessa Miemietz University of East Anglia, Norwich, United Kingdom
Softcover ISBN:  978-1-4704-7622-9
Product Code:  MEMO/314/1594
List Price: $85.00
AMS Member Price: $68.00
Not yet published - Preorder Now!
Expected availability date: November 08, 2025
eBook ISBN:  978-1-4704-8485-9
Product Code:  MEMO/314/1594.E
List Price: $85.00
AMS Member Price: $68.00
Softcover ISBN:  978-1-4704-7622-9
eBook: ISBN:  978-1-4704-8485-9
Product Code:  MEMO/314/1594.B
List Price: $170.00 $127.50
AMS Member Price: $136.00 $102.00
Not yet published - Preorder Now!
Expected availability date: November 08, 2025
Click above image for expanded view
Uniqueness of Exact Borel Subalgebras and Bocses
Julian Külshammer Uppsala University, Uppsala, Sweden
Vanessa Miemietz University of East Anglia, Norwich, United Kingdom
Softcover ISBN:  978-1-4704-7622-9
Product Code:  MEMO/314/1594
List Price: $85.00
AMS Member Price: $68.00
Not yet published - Preorder Now!
Expected availability date: November 08, 2025
eBook ISBN:  978-1-4704-8485-9
Product Code:  MEMO/314/1594.E
List Price: $85.00
AMS Member Price: $68.00
Softcover ISBN:  978-1-4704-7622-9
eBook ISBN:  978-1-4704-8485-9
Product Code:  MEMO/314/1594.B
List Price: $170.00 $127.50
AMS Member Price: $136.00 $102.00
Not yet published - Preorder Now!
Expected availability date: November 08, 2025
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 3142025; 219 pp
    MSC: Primary 16; Secondary 18

    View the abstract.

  • Table of Contents
     
     
    • Chapters
    • 1. Introduction
    • 2. $A_\infty $-algebras, Kadeishvili’s theorem and Merkulov’s construction
    • 3. Quasi-hereditary algebras and bocses
    • 4. $A_\infty $-structures on Ext-algebras and uniqueness of bocses
    • A. The lift of the comultiplication $\mu _2$ on $\mathcal {P}$
    • B. The homotopy $\mu _3$ on $\mathcal {P}$ up to which $\mu _2$ is coassociative
    • C. The maps $\mu _4^0, \mu _4^1, \mu _4^2$ on $\mathcal {P}$
    • D. The maps $\mu _5^0$ and $\mu _5^1$ on $\mathcal {P}$
    • E. The map $\mu _6^0$ on $\mathcal {P}$
  • Additional Material
     
     
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Accessibility – to request an alternate format of an AMS title
Volume: 3142025; 219 pp
MSC: Primary 16; Secondary 18

View the abstract.

  • Chapters
  • 1. Introduction
  • 2. $A_\infty $-algebras, Kadeishvili’s theorem and Merkulov’s construction
  • 3. Quasi-hereditary algebras and bocses
  • 4. $A_\infty $-structures on Ext-algebras and uniqueness of bocses
  • A. The lift of the comultiplication $\mu _2$ on $\mathcal {P}$
  • B. The homotopy $\mu _3$ on $\mathcal {P}$ up to which $\mu _2$ is coassociative
  • C. The maps $\mu _4^0, \mu _4^1, \mu _4^2$ on $\mathcal {P}$
  • D. The maps $\mu _5^0$ and $\mu _5^1$ on $\mathcal {P}$
  • E. The map $\mu _6^0$ on $\mathcal {P}$
Review Copy – for publishers of book reviews
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.