Softcover ISBN: | 978-2-85629-339-3 |
Product Code: | PASY/31 |
List Price: | $60.00 |
AMS Member Price: | $48.00 |
Softcover ISBN: | 978-2-85629-339-3 |
Product Code: | PASY/31 |
List Price: | $60.00 |
AMS Member Price: | $48.00 |
-
Book DetailsPanoramas et SynthèsesVolume: 31; 2010; 221 ppMSC: Primary 11; 12; 14
Over the last twenty years, rationally connected varieties have played an important role in the classification program of higher dimensional varieties. Over the last ten years, a number of their arithmetic properties have been discovered. It is the goal of this volume to report on many of these advances, as well as on a number of open questions.
This volume gathers the contributions of the four speakers at the CNRS/SMF workshop “Etats de la Recherche”, which was organized by J.-L. Colliot-Thélène, O. Debarre, and A. Höring in Strasbourg in May 2008.
L. Bonavero discusses the fundamental geometric properties of rationally connected varieties and also offers an opening on modern birational classification techniques. O. Wittenberg surveys the arithmetic properties of rationally connected varieties, mostly over local fields and over finite fields (deformation techniques and cohomological techniques). B. Hassett reports on the weak approximation property for families of rationally connected varieties over a complex curve.
The emerging notion of simply rationally connected variety is at the heart of J. Starr's contribution. Starr's paper starts with a study of sections of families of such varieties over a complex surface and culminates with a partly simplified proof of the theorem by de A. J. Jong, J. Starr, and X. He: Serre's Conjecture II for principal homogeneous spaces holds over function fields in two variables over the complex field.
A publication of the Société Mathématique de France, Marseilles (SMF), distributed by the AMS in the U.S., Canada, and Mexico. Orders from other countries should be sent to the SMF. Members of the SMF receive a 30% discount from list.
ReadershipGraduate students and research mathematicians.
-
RequestsReview Copy – for publishers of book reviewsAccessibility – to request an alternate format of an AMS title
- Book Details
- Requests
Over the last twenty years, rationally connected varieties have played an important role in the classification program of higher dimensional varieties. Over the last ten years, a number of their arithmetic properties have been discovered. It is the goal of this volume to report on many of these advances, as well as on a number of open questions.
This volume gathers the contributions of the four speakers at the CNRS/SMF workshop “Etats de la Recherche”, which was organized by J.-L. Colliot-Thélène, O. Debarre, and A. Höring in Strasbourg in May 2008.
L. Bonavero discusses the fundamental geometric properties of rationally connected varieties and also offers an opening on modern birational classification techniques. O. Wittenberg surveys the arithmetic properties of rationally connected varieties, mostly over local fields and over finite fields (deformation techniques and cohomological techniques). B. Hassett reports on the weak approximation property for families of rationally connected varieties over a complex curve.
The emerging notion of simply rationally connected variety is at the heart of J. Starr's contribution. Starr's paper starts with a study of sections of families of such varieties over a complex surface and culminates with a partly simplified proof of the theorem by de A. J. Jong, J. Starr, and X. He: Serre's Conjecture II for principal homogeneous spaces holds over function fields in two variables over the complex field.
A publication of the Société Mathématique de France, Marseilles (SMF), distributed by the AMS in the U.S., Canada, and Mexico. Orders from other countries should be sent to the SMF. Members of the SMF receive a 30% discount from list.
Graduate students and research mathematicians.