Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
The Early Mathematics of Leonhard Euler
 
The Early Mathematics of Leonhard Euler
MAA Press: An Imprint of the American Mathematical Society
Softcover ISBN:  978-1-4704-5180-6
Product Code:  SPEC/98
List Price: $35.00
MAA Member Price: $26.25
AMS Member Price: $26.25
eBook ISBN:  978-1-4704-5181-3
Product Code:  SPEC/98.E
List Price: $30.00
MAA Member Price: $22.50
AMS Member Price: $22.50
Softcover ISBN:  978-1-4704-5180-6
eBook: ISBN:  978-1-4704-5181-3
Product Code:  SPEC/98.B
List Price: $65.00 $50.00
MAA Member Price: $48.75 $37.50
AMS Member Price: $48.75 $37.50
The Early Mathematics of Leonhard Euler
Click above image for expanded view
The Early Mathematics of Leonhard Euler
MAA Press: An Imprint of the American Mathematical Society
Softcover ISBN:  978-1-4704-5180-6
Product Code:  SPEC/98
List Price: $35.00
MAA Member Price: $26.25
AMS Member Price: $26.25
eBook ISBN:  978-1-4704-5181-3
Product Code:  SPEC/98.E
List Price: $30.00
MAA Member Price: $22.50
AMS Member Price: $22.50
Softcover ISBN:  978-1-4704-5180-6
eBook ISBN:  978-1-4704-5181-3
Product Code:  SPEC/98.B
List Price: $65.00 $50.00
MAA Member Price: $48.75 $37.50
AMS Member Price: $48.75 $37.50
  • Book Details
     
     
    Spectrum
    Volume: 982007; 391 pp
    MSC: Primary 01

    The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler's early mathematical works; the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler's greatest work, the Konigsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our \(f(x)\) notation, and the integrating factor in differential equations.

    The books shows how contributions in diverse fields are related, how number theory relates to series, which, in turn, relate to elliptic integrals and then to differential equations. There are dozens of such strands in this beautiful web of mathematics. At the same time, we see Euler grow in power and sophistication, from a young student when at 18 he published his first work on differential equations (a paper with a serious flaw) to the most celebrated mathematician and scientist of his time. It is a portrait of the world's most exciting mathematics between 1725 and 1741, rich in technical detail, woven with connections within Euler's work and with the work of other mathematicians in other times and places, laced with historical context.

  • Table of Contents
     
     
    • Chapters
    • Interlude: 1725–1727
    • 1. E-1: Constructio linearum isochronarum in medio quocunque resistente
    • 2. E-3: Methodus inveniendi traiectorias reciprocas algebraicas
    • Interlude: 1728
    • 3. E-5: Problematis traiectoriarum reciprocarum solutio
    • 4. E-10: Nova methodus innumerabiles aequationes differentialis secundi gradus reducendi ad aequationes differentialis primi gradus
    • Interlude: 1729–1731
    • 5. E-19: De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt
    • 6. E-9: De linea brevissima in superficie quacunque duo quaelibet puncta iungente
    • 7. E-20: De summatione innumerabilium progressionum
    • Interlude: 1732
    • 8. E-25: Methodus generalis summandi progressiones
    • 9. E-26: Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus
    • 10. E-27: Problematis isoperimetrici in latissimo sensu accepti solutio generalis
    • Interlude: 1733
    • 11. E-11: Constructio aequationum quarundam differentialium quae indeterminatarum separationem non admittunt
    • 12. E-28: Specimen de constructione aequationum differentialium sine indeterminatarum separatione
    • 13. E-29: De solutione problematum Diophanteorum per numeros integros
    • 14. E-30: De formis radicum aequationum cuiusque ordinis conjectatio
    • 15. E-31: Constructio aequationis differentialis $ax^n dx = dy + y^2 dx$
    • Interlude: 1734
    • 16. E-42: De linea celerrimi descensus in medio quocunque resistente
    • 17. E-43: De progressionibus harmonicis observationes
    • 18. E-44: De infinitis curvis eiusdem generis sen methodus inveniendi aequationes pro infinitis curvis eiusdem generis
    • 19. E-45: Additamentum ad dissertationem de infinitis curvis eiusdem generis
    • 20. E-48: Investigatio binarum curvarum, quarum arcus eidem abscissae respondents summam algebraicam constituant
    • Interlude: 1735
    • 21. E-41: De summis serierum reciprocarum
    • 22. E-46: Methodus universalis serierum convergentium summas quam proxime inveniendi
    • 23. E-47: Inventio summae cuiusque seriei ex dato termino generali
    • 24. E-51: De constructione aequationum ope motus tractorii aliisque ad methodum tangentium inversam pertinentibus
    • 25. E-52: Solutio problematum rectificationem ellipsis requirentium
    • 26. E-53: Solutio problematis ad geometriam situs pertinentis
    • Interlude: 1736
    • 27. E-54: Theorematum quorundam ad numeros primos spectantium demonstratio
    • 28. E-55: Methodus universalis series summandi ulterius promota
    • 29. E-56: Curvarum maximi minimive proprietate gaudentium inventio nova et facilis
    • Interlude: 1737
    • 30. E-70: De constructione aequationum
    • 31. E-71: De fractionibus continuis dissertatio
    • 32. E-72: Variae observationes circa series infinitas
    • 33. E-73: Solutio problematis geometrici circa lunulas a circulis formatas
    • Interlude: 1738
    • 34. E-23: De curvis rectificabilibus algebraicis atque traiectoriis reciprocis algebraicis
    • 35. E-74: De variis modis circuli quadraturam numeris proxime exprimendi
    • 36. E-95: De aequationibus differentialibus, quae certis tantum casibus integrationem admittunt
    • 37. E-98: Theorematum quorundam arithmeticorum demonstrationes
    • 38. E-99: Solutio problematis cuiusdam a celeberrimo Daniele Bernoullio propositi
    • Interlude: 1739
    • 39. E-122: De productis ex infinitis factoribus ortis
    • 40. E-123 : De fractionibus continuis observationes
    • 41. E-125: Consideratio progressionis cuiusdam ad circuli quadraturam inveniendam idoneae
    • 42. E-128: Methodus facilis computandi angulorum sinus ac tangentes tam naturales quam artificiales
    • 43. E-129: Investigatio curvarum quae evolutae sui similes producunt
    • 44. E-130: De seriebus quibusdam considerationes
    • Interlude: 1740
    • 45. E-36: Solutio problematis arithmetici de inveniendo numero, qui per datos numeros divisus, relinquat data residua
    • 46. E-157: De extractione radicum ex quantitatibus irrationalibus
    • Interlude: 1741
    • 47. E-63: Démonstration de la somme de cette suite $1 + \frac {1}{4}+\frac {1}{9}+\frac {1}{16}+\frac {1}{25}+\frac {1}{36}+\text {etc.}$
    • 48. E-158: Observationes analyticae variae de combinationibus
    • 49. E-790: Commentatio de matheseos sublimioris utilitate
  • Additional Material
     
     
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Accessibility – to request an alternate format of an AMS title
Volume: 982007; 391 pp
MSC: Primary 01

The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler's early mathematical works; the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler's greatest work, the Konigsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our \(f(x)\) notation, and the integrating factor in differential equations.

The books shows how contributions in diverse fields are related, how number theory relates to series, which, in turn, relate to elliptic integrals and then to differential equations. There are dozens of such strands in this beautiful web of mathematics. At the same time, we see Euler grow in power and sophistication, from a young student when at 18 he published his first work on differential equations (a paper with a serious flaw) to the most celebrated mathematician and scientist of his time. It is a portrait of the world's most exciting mathematics between 1725 and 1741, rich in technical detail, woven with connections within Euler's work and with the work of other mathematicians in other times and places, laced with historical context.

  • Chapters
  • Interlude: 1725–1727
  • 1. E-1: Constructio linearum isochronarum in medio quocunque resistente
  • 2. E-3: Methodus inveniendi traiectorias reciprocas algebraicas
  • Interlude: 1728
  • 3. E-5: Problematis traiectoriarum reciprocarum solutio
  • 4. E-10: Nova methodus innumerabiles aequationes differentialis secundi gradus reducendi ad aequationes differentialis primi gradus
  • Interlude: 1729–1731
  • 5. E-19: De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt
  • 6. E-9: De linea brevissima in superficie quacunque duo quaelibet puncta iungente
  • 7. E-20: De summatione innumerabilium progressionum
  • Interlude: 1732
  • 8. E-25: Methodus generalis summandi progressiones
  • 9. E-26: Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus
  • 10. E-27: Problematis isoperimetrici in latissimo sensu accepti solutio generalis
  • Interlude: 1733
  • 11. E-11: Constructio aequationum quarundam differentialium quae indeterminatarum separationem non admittunt
  • 12. E-28: Specimen de constructione aequationum differentialium sine indeterminatarum separatione
  • 13. E-29: De solutione problematum Diophanteorum per numeros integros
  • 14. E-30: De formis radicum aequationum cuiusque ordinis conjectatio
  • 15. E-31: Constructio aequationis differentialis $ax^n dx = dy + y^2 dx$
  • Interlude: 1734
  • 16. E-42: De linea celerrimi descensus in medio quocunque resistente
  • 17. E-43: De progressionibus harmonicis observationes
  • 18. E-44: De infinitis curvis eiusdem generis sen methodus inveniendi aequationes pro infinitis curvis eiusdem generis
  • 19. E-45: Additamentum ad dissertationem de infinitis curvis eiusdem generis
  • 20. E-48: Investigatio binarum curvarum, quarum arcus eidem abscissae respondents summam algebraicam constituant
  • Interlude: 1735
  • 21. E-41: De summis serierum reciprocarum
  • 22. E-46: Methodus universalis serierum convergentium summas quam proxime inveniendi
  • 23. E-47: Inventio summae cuiusque seriei ex dato termino generali
  • 24. E-51: De constructione aequationum ope motus tractorii aliisque ad methodum tangentium inversam pertinentibus
  • 25. E-52: Solutio problematum rectificationem ellipsis requirentium
  • 26. E-53: Solutio problematis ad geometriam situs pertinentis
  • Interlude: 1736
  • 27. E-54: Theorematum quorundam ad numeros primos spectantium demonstratio
  • 28. E-55: Methodus universalis series summandi ulterius promota
  • 29. E-56: Curvarum maximi minimive proprietate gaudentium inventio nova et facilis
  • Interlude: 1737
  • 30. E-70: De constructione aequationum
  • 31. E-71: De fractionibus continuis dissertatio
  • 32. E-72: Variae observationes circa series infinitas
  • 33. E-73: Solutio problematis geometrici circa lunulas a circulis formatas
  • Interlude: 1738
  • 34. E-23: De curvis rectificabilibus algebraicis atque traiectoriis reciprocis algebraicis
  • 35. E-74: De variis modis circuli quadraturam numeris proxime exprimendi
  • 36. E-95: De aequationibus differentialibus, quae certis tantum casibus integrationem admittunt
  • 37. E-98: Theorematum quorundam arithmeticorum demonstrationes
  • 38. E-99: Solutio problematis cuiusdam a celeberrimo Daniele Bernoullio propositi
  • Interlude: 1739
  • 39. E-122: De productis ex infinitis factoribus ortis
  • 40. E-123 : De fractionibus continuis observationes
  • 41. E-125: Consideratio progressionis cuiusdam ad circuli quadraturam inveniendam idoneae
  • 42. E-128: Methodus facilis computandi angulorum sinus ac tangentes tam naturales quam artificiales
  • 43. E-129: Investigatio curvarum quae evolutae sui similes producunt
  • 44. E-130: De seriebus quibusdam considerationes
  • Interlude: 1740
  • 45. E-36: Solutio problematis arithmetici de inveniendo numero, qui per datos numeros divisus, relinquat data residua
  • 46. E-157: De extractione radicum ex quantitatibus irrationalibus
  • Interlude: 1741
  • 47. E-63: Démonstration de la somme de cette suite $1 + \frac {1}{4}+\frac {1}{9}+\frac {1}{16}+\frac {1}{25}+\frac {1}{36}+\text {etc.}$
  • 48. E-158: Observationes analyticae variae de combinationibus
  • 49. E-790: Commentatio de matheseos sublimioris utilitate
Review Copy – for publishers of book reviews
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.