Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Ricci Flow and Geometrization of 3-Manifolds
 
John W. Morgan Stony Brook University, Stony Brook, NY
Frederick Tsz-Ho Fong Stanford University, Stanford, CA
Ricci Flow and Geometrization of 3-Manifolds
Softcover ISBN:  978-0-8218-4963-7
Product Code:  ULECT/53
List Price: $69.00
MAA Member Price: $62.10
AMS Member Price: $55.20
eBook ISBN:  978-1-4704-1648-5
Product Code:  ULECT/53.E
List Price: $65.00
MAA Member Price: $58.50
AMS Member Price: $52.00
Softcover ISBN:  978-0-8218-4963-7
eBook: ISBN:  978-1-4704-1648-5
Product Code:  ULECT/53.B
List Price: $134.00 $101.50
MAA Member Price: $120.60 $91.35
AMS Member Price: $107.20 $81.20
Ricci Flow and Geometrization of 3-Manifolds
Click above image for expanded view
Ricci Flow and Geometrization of 3-Manifolds
John W. Morgan Stony Brook University, Stony Brook, NY
Frederick Tsz-Ho Fong Stanford University, Stanford, CA
Softcover ISBN:  978-0-8218-4963-7
Product Code:  ULECT/53
List Price: $69.00
MAA Member Price: $62.10
AMS Member Price: $55.20
eBook ISBN:  978-1-4704-1648-5
Product Code:  ULECT/53.E
List Price: $65.00
MAA Member Price: $58.50
AMS Member Price: $52.00
Softcover ISBN:  978-0-8218-4963-7
eBook ISBN:  978-1-4704-1648-5
Product Code:  ULECT/53.B
List Price: $134.00 $101.50
MAA Member Price: $120.60 $91.35
AMS Member Price: $107.20 $81.20
  • Book Details
     
     
    University Lecture Series
    Volume: 532010; 150 pp
    MSC: Primary 57; Secondary 35; 53

    This book is based on lectures given at Stanford University in 2009. The purpose of the lectures and of the book is to give an introductory overview of how to use Ricci flow and Ricci flow with surgery to establish the Poincaré Conjecture and the more general Geometrization Conjecture for 3-dimensional manifolds. Most of the material is geometric and analytic in nature; a crucial ingredient is understanding singularity development for 3-dimensional Ricci flows and for 3-dimensional Ricci flows with surgery. This understanding is crucial for extending Ricci flows with surgery so that they are defined for all positive time. Once this result is in place, one must study the nature of the time-slices as the time goes to infinity in order to deduce the topological consequences.

    The goal of the authors is to present the major geometric and analytic results and themes of the subject without weighing down the presentation with too many details. This book can be read as an introduction to more complete treatments of the same material.

    Readership

    Graduate students and research mathematicians interested in differential equations and topology.

  • Table of Contents
     
     
    • Part 1. Overview
    • Lecture 1
    • Lecture 2
    • Lecture 3
    • Lecture 4
    • Lecture 5
    • Summary of Part 1
    • Part 2. Non-collapsing results for Ricci flows
    • Lecture 6
    • Lecture 7
    • Lecture 8
    • Lecture 9
    • Lecture 10
    • Lecture 11
    • Lecture 12
    • Part 3. $\kappa $-solutions
    • Lecture 13
    • Lecture 14
    • Lecture 15
    • Lecture 16
    • Lecture 17
    • Lecture 18
    • Lecture 19
    • Part 4. The canonical neighborhood theorem
    • Lecture 20
    • Lecture 21
    • Lecture 22
    • Part 5. Ricci flow with surgery
    • Lecture 23
    • Lecture 24
    • Lecture 25
    • Lecture 26
    • Part 6. Behavior as $t \to \infty $
    • Lecture 27
    • Lecture 28
    • Lecture 29
    • Lecture 30
    • Lecture 31
    • Lecture 32
  • Reviews
     
     
    • The notes will be useful for readers looking for an overview of the arguments and key ideas, before proceeding to the detailed proofs.

      Mathematical Reviews
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 532010; 150 pp
MSC: Primary 57; Secondary 35; 53

This book is based on lectures given at Stanford University in 2009. The purpose of the lectures and of the book is to give an introductory overview of how to use Ricci flow and Ricci flow with surgery to establish the Poincaré Conjecture and the more general Geometrization Conjecture for 3-dimensional manifolds. Most of the material is geometric and analytic in nature; a crucial ingredient is understanding singularity development for 3-dimensional Ricci flows and for 3-dimensional Ricci flows with surgery. This understanding is crucial for extending Ricci flows with surgery so that they are defined for all positive time. Once this result is in place, one must study the nature of the time-slices as the time goes to infinity in order to deduce the topological consequences.

The goal of the authors is to present the major geometric and analytic results and themes of the subject without weighing down the presentation with too many details. This book can be read as an introduction to more complete treatments of the same material.

Readership

Graduate students and research mathematicians interested in differential equations and topology.

  • Part 1. Overview
  • Lecture 1
  • Lecture 2
  • Lecture 3
  • Lecture 4
  • Lecture 5
  • Summary of Part 1
  • Part 2. Non-collapsing results for Ricci flows
  • Lecture 6
  • Lecture 7
  • Lecture 8
  • Lecture 9
  • Lecture 10
  • Lecture 11
  • Lecture 12
  • Part 3. $\kappa $-solutions
  • Lecture 13
  • Lecture 14
  • Lecture 15
  • Lecture 16
  • Lecture 17
  • Lecture 18
  • Lecture 19
  • Part 4. The canonical neighborhood theorem
  • Lecture 20
  • Lecture 21
  • Lecture 22
  • Part 5. Ricci flow with surgery
  • Lecture 23
  • Lecture 24
  • Lecture 25
  • Lecture 26
  • Part 6. Behavior as $t \to \infty $
  • Lecture 27
  • Lecture 28
  • Lecture 29
  • Lecture 30
  • Lecture 31
  • Lecture 32
  • The notes will be useful for readers looking for an overview of the arguments and key ideas, before proceeding to the detailed proofs.

    Mathematical Reviews
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
You may be interested in...
Please select which format for which you are requesting permissions.