Preface xi
who invited me to speak at California State University, Fresno on my experiences
teaching this course, also made useful comments. My colleague Jeremy Tyson made
many valuable suggestions on both the mathematics and the exposition. I asked
several friends to look at the N-th draft for various large N. Bob Vanderbei, Rock
Rodini, and Mike Bolt all made many useful comments which I have incorporated.
I thank Sergei Gelfand and Ed Dunne of the American Mathematical Society for
encouragement; Ed Dunne provided me marked-up versions of two drafts and shared
with me, in a lengthy phone conversation, his insights on how to improve and
complete the project. Cristin Zannella and Arlene O’Sean of the AMS oversaw the
final editing and other finishing touches. Finally I thank my wife Annette and our
four children for their love.
Preface for the student
I hope that this book reveals the beauty and usefulness of complex numbers to
you. I want you to enjoy both reading it and solving the problems in it. Perhaps you
will spot something in your own area of interest and benefit from applying complex
numbers to it. Students in my classes have found applications of ideas from this
book to physics, music, engineering, and linguistics. Several students have become
interested in historical and philosophical aspects of complex numbers. I have not
yet seen anyone get excited about the hysterical aspects of complex numbers.
At the very least you should see many places where complex numbers shed a
new light on things you have learned before. One of my favorite examples is trig
identities. I found them rather boring in high school and later I delighted in proving
them more easily using the complex exponential function. I hope you have the same
experience. A second example concerns certain definite integrals. The techniques
of complex analysis allow for stunningly easy evaluations of many calculus integrals
and seem to lie within the realm of science fiction.
This book is meant to be readable, but at the same time it is precise and rigor-
ous. Sometimes mathematicians include details that others feel are unnecessary or
obvious, but do not be alarmed. If you do many of the exercises and work through
the examples, then you should learn plenty and enjoy doing it. I cannot stress
enough two things I have learned from years of teaching mathematics. First, stu-
dents make too few sketches. You should strive to merge geometric and algebraic
reasoning. Second, definitions are your friends. If a theorem says something about
a concept, then you should develop both an intuitive sense of the concept and the
discipline to learn the precise definition. When asked to verify something on an
exam, start by writing down the definition of that something. Often the definition
suggests exactly what you should do!
Some sections and paragraphs introduce more sophisticated terminology than
is necessary at the time, in order to prepare for later parts of the book and even
for subsequent courses. I have tried to indicate all such places and to revisit the
crucial ideas. In case you are struggling with any material in this book, remain
calm. The magician will reveal his secrets in due time.
Previous Page Next Page