Contents

Chapter 1. Introduction 1
 1.1. Design of this book 1
 1.2. Parts V–VII: How many two-dimensional geometries are there? 3
 1.3. Parts IV–VII: Some needed multivariable calculus and linear algebra facts 4
 1.4. References and notation 5

Part I. Neutral geometry

Chapter 2. Euclid’s postulates for plane geometry 9
 2.1. Neutral geometry 9
 2.2. Sum of angles in a triangle in NG 12
 2.3. Are there rectangles in NG? 14

Part II. Euclidean (plane) geometry

Chapter 3. Rectangles and cartesian coordinates 19
 3.1. Euclid’s Fifth Postulate, the Parallel Postulate 19
 3.2. The distance formula in EG 21
 3.3. Law of Sines and Law of Cosines 22
 3.4. Dilations in EG 24
 3.5. Similarity in EG 26

Chapter 4. Concurrence and circles in Euclidean geometry 29
 4.1. Concurrence theorems in EG, Ceva’s theorem 29
 4.2. Properties of circles in EG 32
 4.3. Circles and sines and cosines 34
4.4. Cross-ratio of points on a circle 35
4.5. Ptolemy’s theorem 37

Part III. Spherical geometry

Chapter 5. Surface area and volume of the R-sphere in Euclidean three-space 41
 5.1. Volumes of pyramids 41
 5.2. Magnification principle 42
 5.3. Relation between volume and surface area of a sphere 43
 5.4. Surface area 43
 5.5. Areas on spheres in Euclidean three-space 46

Part IV. Usual dot-product for three-dimensional Euclidean space

Chapter 6. Euclidean three-space as a metric space 51
 6.1. Points and vectors in Euclidean three-space 51
 6.2. Curves in Euclidean three-space and vectors tangent to them 56
 6.3. Surfaces in Euclidean three-space and vectors tangent to them 59

Chapter 7. Transformations 61
 7.1. Rigid motions of Euclidean three-space 61
 7.2. Orthogonal matrices 63
 7.3. Linear fractional transformations 64

Part V. K-geometry

Chapter 8. Changing coordinates 71
 8.1. Bringing the North Pole of the R-sphere to $(0,0,1)$ 71
 8.2. K-geometry: Euclidean lengths and angles in (x,y,z)-coordinates 73
 8.3. Congruences, that is, rigid motions 76

Chapter 9. Uniform coordinates for the two-dimensional geometries 79
 9.1. The two-dimensional geometries in (x,y,z)-coordinates 79
 9.2. Central projection 83
 9.3. Stereographic projection 89
 9.4. Relationship between central and stereographic projection coordinates 94

Part VI. Return to spherical geometry

Chapter 10. Spherical geometry from an advanced viewpoint 99
 10.1. Rigid motions in spherical geometry 99
 10.2. Spherical geometry is homogeneous 101
 10.3. Lines in spherical geometry 104
 10.4. Central projection in SG 107
10.5. Stereographic projection in \textbf{SG} \hfill 108

Part VII. Hyperbolic geometry

Chapter 11. The curvature K becomes negative \hfill 113
 11.1. The world sheet and the light cone \hfill 113
 11.2. Hyperbolic geometry is homogeneous \hfill 115
 11.3. Lines in hyperbolic geometry \hfill 119
 11.4. Central projection in \textbf{HG} \hfill 122
 11.5. Stereographic projection in \textbf{HG} \hfill 128

Definitions \hfill 133

Bibliography \hfill 139

Index \hfill 141