1 Financial Markets

1.1 Markets and Math 1
1.2 Stocks and Their Derivatives 2
 1.2.1 Forward Stock Contracts 3
 1.2.2 Call Options 7
 1.2.3 Put Options 9
 1.2.4 Short Selling 11
1.3 Pricing Futures Contracts 12
1.4 Bond Markets 15
 1.4.1 Rates of Return 16
 1.4.2 The U.S. Bond Market 17
 1.4.3 Interest Rates and Forward Interest Rates 18
 1.4.4 Yield Curves 19
1.5 Interest Rate Futures 20
 1.5.1 Determining the Futures Price 20
 1.5.2 Treasury Bill Futures 21
1.6 Foreign Exchange 22
 1.6.1 Currency Hedging 22
 1.6.2 Computing Currency Futures 23
2 Binomial Trees, Replicating Portfolios, and Arbitrage

2.1 Three Ways to Price a Derivative 25
2.2 The Game Theory Method 26
 2.2.1 Eliminating Uncertainty 27
 2.2.2 Valuing the Option 27
 2.2.3 Arbitrage 27
 2.2.4 The Game Theory Method—A General Formula 28
2.3 Replicating Portfolios 29
 2.3.1 The Context 30
 2.3.2 A Portfolio Match 30
 2.3.3 Expected Value Pricing Approach 31
 2.3.4 How to Remember the Pricing Probability 32
2.4 The Probabilistic Approach 34
2.5 Risk 36
2.6 Repeated Binomial Trees and Arbitrage 39
2.7 Appendix: Limits of the Arbitrage Method 41

3 Tree Models for Stocks and Options 44

3.1 A Stock Model 44
 3.1.1 Recombining Trees 46
 3.1.2 Chaining and Expected Values 46
3.2 Pricing a Call Option with the Tree Model 49
3.3 Pricing an American Option 52
3.4 Pricing an Exotic Option—Knockout Options 55
3.5 Pricing an Exotic Option—Lookback Options 59
3.6 Adjusting the Binomial Tree Model to Real-World Data 61
3.7 Hedging and Pricing the N-Period Binomial Model 66

4 Using Spreadsheets to Compute Stock and Option Trees 71

4.1 Some Spreadsheet Basics 71
4.2 Computing European Option Trees 74
4.3 Computing American Option Trees 77
4.4 Computing a Barrier Option Tree 79
4.5 Computing N-Step Trees 80
5 Continuous Models and the Black-Scholes Formula

5.1 A Continuous-Time Stock Model
5.2 The Discrete Model
5.3 An Analysis of the Continuous Model
5.4 The Black-Scholes Formula
5.5 Derivation of the Black-Scholes Formula
 5.5.1 The Related Model
 5.5.2 The Expected Value
 5.5.3 Two Integrals
 5.5.4 Putting the Pieces Together
5.6 Put-Call Parity
5.7 Trees and Continuous Models
 5.7.1 Binomial Probabilities
 5.7.2 Approximation with Large Trees
 5.7.3 Scaling a Tree to Match a GBM Model
5.8 The GBM Stock Price Model—A Cautionary Tale
5.9 Appendix: Construction of a Brownian Path

6 The Analytic Approach to Black-Scholes

6.1 Strategy for Obtaining the Differential Equation
6.2 Expanding $V(S, t)$
6.3 Expanding and Simplifying $V(S_t, t)$
6.4 Finding a Portfolio
6.5 Solving the Black-Scholes Differential Equation
 6.5.1 Cash or Nothing Option
 6.5.2 Stock-or-Nothing Option
 6.5.3 European Call
6.6 Options on Futures
 6.6.1 Call on a Futures Contract
 6.6.2 A PDE for Options on Futures
6.7 Appendix: Portfolio Differentials

7 Hedging

7.1 Delta Hedging
 7.1.1 Hedging, Dynamic Programming, and a Proof that Black-Scholes Really Works in an Idealized World
 7.1.2 Why the Foregoing Argument Does Not Hold in the Real World
 7.1.3 Earlier Δ Hedges
7.2 Methods for Hedging a Stock or Portfolio 126
 7.2.1 Hedging with Puts 126
 7.2.2 Hedging with Collars 127
 7.2.3 Hedging with Paired Trades 127
 7.2.4 Correlation-Based Hedges 127
 7.2.5 Hedging in the Real World 128

7.3 Implied Volatility 128
 7.3.1 Computing σ_I with Maple 128
 7.3.2 The Volatility Smile 129

7.4 The Parameters $\Delta, \Gamma, \text{ and } \Theta$ 130
 7.4.1 The Role of Γ 131
 7.4.2 A Further Role for Δ, Γ, Θ 133

7.5 Derivation of the Delta Hedging Rule 134

7.6 Delta Hedging a Stock Purchase 135

8 Bond Models and Interest Rate Options 137

8.1 Interest Rates and Forward Rates 137
 8.1.1 Size 138
 8.1.2 The Yield Curve 138
 8.1.3 How Is the Yield Curve Determined? 139
 8.1.4 Forward Rates 139

8.2 Zero-Coupon Bonds 140
 8.2.1 Forward Rates and ZCBs 140
 8.2.2 Computations Based on $Y(t)$ or $P(t)$ 142

8.3 Swaps 144
 8.3.1 Another Variation on Payments 147
 8.3.2 A More Realistic Scenario 148
 8.3.3 Models for Bond Prices 149
 8.3.4 Arbitrage 150

8.4 Pricing and Hedging a Swap 152
 8.4.1 Arithmetic Interest Rates 153
 8.4.2 Geometric Interest Rates 155

8.5 Interest Rate Models 157
 8.5.1 Discrete Interest Rate Models 158
 8.5.2 Pricing ZCBs from the Interest Rate Model 162
 8.5.3 The Bond Price Paradox 165
 8.5.4 Can the Expected Value Pricing Method Be Arbitraged? 166
 8.5.5 Continuous Models 171
 8.5.6 A Bond Price Model 171
11.4 Pricing International Political Risk 228
11.4.1 The Credit Spread or Risk Premium on Bonds 229
11.5 Two Models for Determining the Risk Premium 230
11.5.1 The Black-Scholes Approach to Pricing Risky Debt ... 230
11.5.2 An Alternative Approach to Pricing Risky Debt 234
11.6 A Hypothetical Example of the JLT Model 238

Answers to Selected Exercises 241

Index .. 247