Bibliography
[AAEL] D. Aharonov, I. Arad, E. Eban, and Z. Landau, Polynomial quantum algorithms for
additive approximations of the Potts model and other points of the Tutte plane, arXiv:
quant-ph/0702008.
[AJL] D. Aharonov, V. Jones, and Z. Landau, A polynomial quantum algorithm for approximating
the Jones polynomial, STOC ’06: Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, ACM, New York (2006), 427–436, arXiv:quant-ph/0511096.
[ASW] D. Arovas, J. Schrieffer, and F. Wilczek, Fractional statistics and the quantum Hall effect,
Phys. Rev. Lett. 53, 7 (1984), 722–723.
[AS] A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge University Press,
2006.
[A] M. Atiyah, On framings of 3-manifolds, Topology 29, 1 (1990), 1–7.
[BK] B. Bakalov and A. Kirillov, Jr., Lectures on Tensor Categories and Modular Functors,
University Lecture Series 21, Amer. Math. Soc., 2001.
[Ba] P. Bantay, The Frobenius-Schur indicator in conformal field theory, Phys. Lett. B 394, 1–2
(1997), 87–88, arXiv:hep-th/9610192.
[Ba2] P. Bantay, The kernel of the modular representation and the Galois action in RCFT, Comm.
Math. Phys. 233, 3 (2003), 423–438, arXiv:math/0102149.
[BaW1] M. Barkeshli and X.-G. Wen, Structure of quasiparticles and their fusion algebra in
fractional quantum Hall states, Phys. Rev. B 79, 19 (2009), 195132, arXiv:0807.2789.
[BaW2] M. Barkeshli and X.-G. Wen, Effective field theory and projective construction for the
Z k parafermion fractional quantum Hall states, arXiv:0910.2483.
[BM] D. Belov and G. Moore, Classification of abelian spin Chern-Simons theories,
arXiv:hep-th/0505235.
[BHMV] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories
derived from the Kauffman bracket. Topology 34, 4 (1995), 883–927.
[BlW] B. Blok and X.-G. Wen, Many-body systems with non-abelian statistics, Nuc. Phys. B 374
(1992), 615–646.
[Bo] P. Bonderson, Non-abelian anyons and interferometry, Caltech Ph.D. thesis, 2007.
[BFN] P. Bonderson, M. Freedman, and C. Nayak, Measurement-only topological quantum compu-
tation via anyonic interferometry, Annals Phys. 324, 14 (2009), 787–826, arXiv:0808.1933.
[BHZS] N. Bonesteel, L. Hormozi, G. Zikos, and S. Simon, Braid topologies for quantum compu-
tation, Phys. Rev. Lett. 95 (2005), 140503.
[BFLW] M. Bordewich, M. Freedman, L. Lov´ asz, and D. Welsh, Approximate counting and quan-
tum computation, Combin. Probab. Comput. 14, 5–6 (2005), 737–754, arXiv:0908.2122.
[Brav] S. Bravyi, Universal quantum computation with the nu=5/2 fractional quantum Hall state,
Phys. Rev. A 73 (2006), 042313, arXiv:quant-ph/0511178.
[BrK] S. Bravyi and A. Kitaev, Quantum invariants of 3-manifolds and quantum computation,
unpublished (2001).
[Bru] A. Brugui` eres, Cat´ egories pr´ emodulaires, modularisations et invariants des vari´ et´ es de di-
mension 3, (French) Math. Ann. 316, 2 (2000), 215–236.
[BXMW] M. Burrello, H. Xu, G. Mussardo, and X. Wan, Topological quantum hashing with
icosahedral group, arXiv:0903.1497.
[CF] C. Caves and C. Fuchs, Quantum information: How much information in a state vector?,
arXiv:quant-ph/9601025.
[DLL] O. Dasbach, T. Le, and X.-S. Lin, Quantum morphing and the Jones polynomial, Comm.
Math. Phys. 224, 2 (2001), 427–442.
111
Previous Page Next Page