Bibliography

[AAEL] D. Aharonov, I. Arad, E. Eban, and Z. Landau, Polynomial quantum algorithms for

additive approximations of the Potts model and other points of the Tutte plane, arXiv:

quant-ph/0702008.

[AJL] D. Aharonov, V. Jones, and Z. Landau, A polynomial quantum algorithm for approximating

the Jones polynomial, STOC ’06: Proceedings of the 38th Annual ACM Symposium on

Theory of Computing, ACM, New York (2006), 427–436, arXiv:quant-ph/0511096.

[ASW] D. Arovas, J. Schrieffer, and F. Wilczek, Fractional statistics and the quantum Hall effect,

Phys. Rev. Lett. 53, 7 (1984), 722–723.

[AS] A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge University Press,

2006.

[A] M. Atiyah, On framings of 3-manifolds, Topology 29, 1 (1990), 1–7.

[BK] B. Bakalov and A. Kirillov, Jr., Lectures on Tensor Categories and Modular Functors,

University Lecture Series 21, Amer. Math. Soc., 2001.

[Ba] P. Bantay, The Frobenius-Schur indicator in conformal field theory, Phys. Lett. B 394, 1–2

(1997), 87–88, arXiv:hep-th/9610192.

[Ba2] P. Bantay, The kernel of the modular representation and the Galois action in RCFT, Comm.

Math. Phys. 233, 3 (2003), 423–438, arXiv:math/0102149.

[BaW1] M. Barkeshli and X.-G. Wen, Structure of quasiparticles and their fusion algebra in

fractional quantum Hall states, Phys. Rev. B 79, 19 (2009), 195132, arXiv:0807.2789.

[BaW2] M. Barkeshli and X.-G. Wen, Effective field theory and projective construction for the

Z k parafermion fractional quantum Hall states, arXiv:0910.2483.

[BM] D. Belov and G. Moore, Classification of abelian spin Chern-Simons theories,

arXiv:hep-th/0505235.

[BHMV] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories

derived from the Kauffman bracket. Topology 34, 4 (1995), 883–927.

[BlW] B. Blok and X.-G. Wen, Many-body systems with non-abelian statistics, Nuc. Phys. B 374

(1992), 615–646.

[Bo] P. Bonderson, Non-abelian anyons and interferometry, Caltech Ph.D. thesis, 2007.

[BFN] P. Bonderson, M. Freedman, and C. Nayak, Measurement-only topological quantum compu-

tation via anyonic interferometry, Annals Phys. 324, 14 (2009), 787–826, arXiv:0808.1933.

[BHZS] N. Bonesteel, L. Hormozi, G. Zikos, and S. Simon, Braid topologies for quantum compu-

tation, Phys. Rev. Lett. 95 (2005), 140503.

[BFLW] M. Bordewich, M. Freedman, L. Lov´ asz, and D. Welsh, Approximate counting and quan-

tum computation, Combin. Probab. Comput. 14, 5–6 (2005), 737–754, arXiv:0908.2122.

[Brav] S. Bravyi, Universal quantum computation with the nu=5/2 fractional quantum Hall state,

Phys. Rev. A 73 (2006), 042313, arXiv:quant-ph/0511178.

[BrK] S. Bravyi and A. Kitaev, Quantum invariants of 3-manifolds and quantum computation,

unpublished (2001).

[Bru] A. Brugui` eres, Cat´ egories pr´ emodulaires, modularisations et invariants des vari´ et´ es de di-

mension 3, (French) Math. Ann. 316, 2 (2000), 215–236.

[BXMW] M. Burrello, H. Xu, G. Mussardo, and X. Wan, Topological quantum hashing with

icosahedral group, arXiv:0903.1497.

[CF] C. Caves and C. Fuchs, Quantum information: How much information in a state vector?,

arXiv:quant-ph/9601025.

[DLL] O. Dasbach, T. Le, and X.-S. Lin, Quantum morphing and the Jones polynomial, Comm.

Math. Phys. 224, 2 (2001), 427–442.

111