Contents
Chapter I: Introduction 1
1. Elementar y matrice s 4
2. Stabilit y 7
3. K X(A [t]) an d unipotents 12
4. Grothendiec k and Whitehead groups of categories with exact sequences 14
5. A Grothendieck style definition o f K
X
(A) 18
6. Homology , mapping cones, and Euler characteristics 2 0
7. Resolutio n theorems 2 3
8. Projectiv e resolutions and regular rings 2 7
9. Hilbert s syzygy theorem 3 2
Appendix 1 3 6
Chapter II: Localisation, Divissage and Applications 4 1
10. Th e localisation sequence 4 2
11. Categorie s of nilpotent endomorphisms 4 6
12. K
x(A[t,rl\)
4 9
13. Devissag e 5 3
14. Som e calculations with the localisation sequence and K
Y
-Laurent theorem .... 5 6
15. Computation s with the Mayer-Vietoris sequence 6 3
References 6 7
v
Previous Page Next Page