CONTENTS
Preface i v
I. Homolog y an d cohomolog y theorie s 1
1. Preliminarie s 2
2. Homolog y an d cohomolog y theorie s 6
3. Spectr a 12
4. Product s 17
5. Spanier-Whitehea d dualit y 2 0
6. Poincar e dualit y (internal ) 2 4
7. Poincar e dualit y (external ) , 2 5
II. Semi-simplicia l spectr a 2 7
1. Semi-simplicia l spectr a «.. . 28
2. Grou p spectr a 3 0
3- Homotop y 3 0
4. Th e reduce d joi n o f tw o spectr a 3 4
5. Convergen t functor s - 3 5
6. Higher-orde r homolog y operation s 3 6
1, Degree s o f orientabilit y o f manifold s 3 8
III. Homotop y group s o f sphere s 3 9
1. Th e Adam s spectra l sequenc e 3 9
2. Som e computation s wit h th e Adam s spectra l sequenc e 4 4
3. Som e polynomia l subalgebra s o f E AS) 4 5
4. Th e /-homomorphis m 4 6
5. Unstabl e Adam s spectra l sequence s 4 9
IV. Stabl e homotop y group s a s ovmodule s 5
1. Higher-orde r composition s (* TToda brackets** ) 5
2. Tod a bracket s an d extension s 5 3
3. Freyd* s generatin g hypothesi s 5 5
V. Cohomolog y an d extension s 5 8
1. Ordinar y homolog y theor y 5 8
2. K-theor y ....6 2
Bibliography , 6 5
Tables 7 0
iii
Previous Page Next Page