2 GEORGE W . WHITEHEA D right formulatio n i s no t ye t clear . On e suc h theore m ha s bee n foun d b y D . S . Kah n i n his thesi s (unpublished) . Fo r a genera l discussio n o f thes e problems , th e reade r i s re - ferred t o Adams ' Seattl e lecture s [7] . 1. Preliminarie s In wha t follows , al l space s wil l b e assume d t o b e provide d wit h base-points , an d all map s an d homotopie s t o preserv e th e base-point th e base-poin t o f an y spac e wil l be denote d indiscriminatel y b y a n asterisk . Moreover , base-point s o f CT-complexe s are assume d to b e vertices . Categorie s o f space s an d map s withou t base-poin t (her e termed "fre e s p a c e s " an d "fre e maps" ) wil l b e assume d t o b e imbedde d i n th e corre - sponding base d categorie s b y th e devic e o f adjoinin g a n externa l base=point . Let S Q b e th e categor y o f compactl y generate d Hausdorf f space s [68 ] havin g th e homotopy typ e o f a CJF-complex . I f X, A ar e object s o f S Q wit h A a close d subspac e of X, th e pai r {X, A) i s sai d t o b e admissible i f an d onl y i f th e inclusio n ma p o f A into X is in th e categor y S Q (i.e. , X an d A hav e th e sam e base-point ) an d i s a cofibration. I t i s easil y see n tha t (1.1) / / A is the base-point of X, then (X, A) is admissible. (1.2) If (Z , A) is an admissible pair in S Q , then there is a CW-pair {K 7 L) such that {X, A) and {K, L) have the same homotopy type. Let {Xj A) b e a n admissibl e pai r i n S Q . The n th e quotien t spac e X/A i s th e identification spac e obtaine d fro m X b y collapsin g A t o a point , th e base-poin t o f X/A X/A belong s t o § 0 . Recall tha t th e categor y S ha s (finite ) product s an d sums i f X, Y € S Q , the n their categorica l produc t X x Y i s th e cartesia n produc t suitabl y retopologized . More - over thei r su m X V Y = X x {* ! \J {* ! x Y i s a subspac e o f X x Y , an d th e pai r (X x Y , X V Y ) i s admissible . Henc e thei r reduced join X A Y = X x Y/X V Y i s de - fined an d belong s t o S Q . Moreover , th e reduce d joi n functor i s defined map s /: X -+X' 9 g: Y -+Y' induc e a m a p / A g : X A X ' _ Y A Y ' wit h th e usua l properties. On e o f th e advantage s o f workin g i n th e categor y S i s (1.3) The reduced join functor is commutative and associative, up to natural homeomorphism. Let X, Y , Z € S 0 , an d le t i^ X - * X V Y , i^ Y - X V Y b e th e natura l inclu - sions. The n i x A 1 : X A Z - » (X V Y ) A Z an d % 2 A 1 : Y A Z — {X V Y ) A Z induc e a ma p h-. U A Z ) V ( y A Z ) - , ( i v y ) A Z and i t i s easil y verifie d tha t h i s a homeomorphism . Henc e (1.4) TA e operation of reduced join is distributive over that of addition, up to
Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 1970 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.