Notation Guide
Symbol Description Page
cn
L2[0,oo]
L2[0,oo,/f]
m
R.H.P.
tf2
(R.H.P.)
B
A°°(R.H.P.)
(REALIZE)
Sw(c)
AR
Chapter 1
Complex n-space. 3
Square integrable complex-valued functions 4
on [0,ooJ.
eKt

L2[0,oo]
or {/: e~
Ktf(t)

L2[0,oo]}.
4
Laplace transform o f f(t). 4
Right half-plane. 5
The set {h G L
2[-ioo,ioo];
h is analytic in 5
R.H.P. with J^ \h(iu +
a\2
du M oo
for all a 0}.
For B an operator Bg = (Bg) for all 5
2€L2[0,oo].
Chapter 2
Positive-valued functio n o f u R and of 11
z€Cn.
Late r use T(e
id,z).
Functions in H°°(R.H.P.) whic h are 11
continuous on closed R.H.P. including
infinity.
Design a circuit tha t correspond s to a 11
function / i n a set E of admissible
functions.
The set {z
CN:
r(w , z) c}. 11
The set {/: \K(iu) - f{iu)\ R{iu)}. 11
Gg(W)
Chapter 3
Linear fractional transformation .
Gg(w) = (aw +
(3)(KW
+
7)"1
, where
9 ~
\K ~I)'
22
Previous Page Next Page