Notation Guide

Symbol Description Page

cn

L2[0,oo]

L2[0,oo,/f]

m

R.H.P.

tf2

(R.H.P.)

B

A°°(R.H.P.)

(REALIZE)

Sw(c)

AR

Chapter 1

Complex n-space. 3

Square integrable complex-valued functions 4

on [0,ooJ.

eKt

•

L2[0,oo]

or {/: e~

Ktf(t)

€

L2[0,oo]}.

4

Laplace transform o f f(t). 4

Right half-plane. 5

The set {h G L

2[-ioo,ioo];

h is analytic in 5

R.H.P. with J^ \h(iu +

a\2

du M oo

for all a 0}.

For B an operator Bg = (Bg) for all 5

2€L2[0,oo].

Chapter 2

Positive-valued functio n o f u € R and of 11

z€Cn.

Late r use T(e

id,z).

Functions in H°°(R.H.P.) whic h are 11

continuous on closed R.H.P. including

infinity.

Design a circuit tha t correspond s to a 11

function / i n a set E of admissible

functions.

The set {z €

CN:

r(w , z) c}. 11

The set {/: \K(iu) - f{iu)\ R{iu)}. 11

Gg(W)

Chapter 3

Linear fractional transformation .

Gg(w) = (aw +

(3)(KW

+

7)"1

, where

9 ~

\K ~I)'

22