Notation Guide Symbol Description Page cn L2[0,oo] L2[0,oo,/f] m R.H.P. tf2 (R.H.P.) B A°°(R.H.P.) (REALIZE) Sw(c) AR Chapter 1 Complex n-space. 3 Square integrable complex-valued functions 4 on [0,ooJ. eKt L2[0,oo] or {/: e~ Kt f(t) L2[0,oo]}. 4 Laplace transform o f f(t). 4 Right half-plane. 5 The set {h G L 2 [-ioo,ioo] h is analytic in 5 R.H.P. with J^ \h(iu + a\2 du M oo for all a 0}. For B an operator Bg = (Bg) for all 5 2€L2[0,oo]. Chapter 2 Positive-valued functio n o f u R and of 1 1 z€Cn. Late r use T(e id ,z). Functions in H°°(R.H.P.) whic h are 1 1 continuous on closed R.H.P. including infinity. Design a circuit tha t correspond s to a 1 1 function / i n a set E of admissible functions. The set {z CN: r(w , z) c}. 1 1 The set {/: \K(iu) - f{iu)\ R{iu)}. 1 1 Gg(W) Chapter 3 Linear fractional transformation . Gg(w) = (aw + (3)(KW + 7)"1, where 9 ~ \K ~I)' 22
Previous Page Next Page